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ABSTRACT

HIGH GAIN LOW POWER OPERATIONAL AMPLIFIER DESIGN

AND COMPENSATION TECHNIQUES

Lisha Li

Department of Electrical and Computer Engineering

Doctor of Philosophy

This dissertation discusses and compares the existing compensation methods

for operational amplifiers. It explores a method to stabilize the op amps without

sacrificing bandwidth to the same degree that commonly used methods do. A cre-

ative design methodology combining intuition, mathematical analysis, and mixed level

simulation is explored for the new compensation scheme. The mixed level approach,

associating system level simulation for most circuits along with device level simula-

tion for some critical analog circuit paths, is presented to verify the behavior of new

design concepts in an effective way. This approach also provides sufficient accuracy

to predict the circuit performance realistically. The new feedforward compensation

method overcomes the serious drawback of the widely used pole splitting method,

which greatly narrows the bandwidth. It can improve the phase margin as well as

optimize the bandwidth of the op amp. The proposed feedforward compensation

method can be easily applied to the popular two gain stage op amp architectures

with very little alteration.





MOS devices are used in the weak inversion region or the subthreshold inver-

sion region to minimize dc source power. A feasible configuration for high gain, low

power op amp design utilizing subthreshold operation along with active operation is

proposed. This op amp uses composite cascode connections for the differential input

stage, a common source second stage, and a current mirror. A prototype of the op

amp was fabricated in a 0.25 µm CMOS process. The proposed op amp produces an

open loop gain above one million with low power consumption around 110 µW and

shows a favorable slew rate and GBW product compared to other amplifiers driving

large capacitive loads. In addition, the composite cascode amplifier requires a com-

pensation capacitor of only 3.5 pF which allows a very small op amp cell. This design

is intended for applications where simplicity of layout, small cell size, and low power

are important. The open loop gain of this design is comparable to bipolar op amps

and exceeds all known reported CMOS designs using the classic Widlar architecture.

The fabricated op amp test results show that the BSIM3 model in CADENCE Spec-

tre Spice Simulation matches closely to the experimental results in spite of the low

current weak inversion operation of the composite cascode output device and thus

provide confidence in the simulation for other similar designs. While facing the chal-

lenge of measuring the op amp open loop characteristics at decreased power supply

voltages, a few viable techniques were developed to measure the op amp open loop

parameters using typically available bench test equipment.
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Chapter 1

Introduction

Operational Amplifiers (Op amps) are one of the most widely used building

blocks for analog and mixed-signal systems. They are employed from dc bias appli-

cations to high speed amplifiers and filters. General purpose op amps can be used

as buffers, summers, integrators, differentiators, comparators, negative impedance

converters, and many other applications. With the quick improvements of com-

puter aided design (CAD) tools, advancements of semiconductor modeling, steady

miniaturization of transistor scaling, and the progress of fabrication processes, the

integrated circuit market is growing rapidly. Nowadays, complementary metal-oxide

semiconductor (CMOS) technology has become dominant over bipolar technology for

analog circuit design in a mixed-signal system due to the industry trend of applying

standard process technologies to implement both analog circuits and digital circuits

on the same chip. While many digital circuits can be adapted to a smaller device

level with a smaller power supply, most existing analog circuitry requires considerable

change or even a redesign to accomplish the same feat. With transistor length being

scaled down to a few tens of nanometers, analog circuits are becoming increasingly

more difficult to improve upon.

The classic Widlar op amp architecture, originally developed for bipolar de-

vices, has required modification for use with CMOS devices. In particular, it has

proved difficult to match the open loop gain of bipolar op amps with CMOS technol-

ogy [3, 4]. This is due to the inherently lower transconductance of CMOS devices as

well as the gain reduction due to short channel effects that come into play for submi-

cron CMOS processes. As a result, gain boosting schemes have been reported [5, 6]

to improve the gain. These gain enhancing methods often require more complicated
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circuit structures and higher power supply voltage, and may produce a limited output

voltage swing. Multiple stage amplifiers may be used for higher gain analog circuit

designs. Nevertheless, multistage amplifiers generally are difficult to compensate.

Many compensation schemes for multistage amplifiers have been investigated and re-

ported [3–5,7]. Techniques similar to those used in general feedback control systems

have been adapted to use with electronic amplifiers. These methods include lead-lag

networks, pole splitting, nested Miller compensation as well as signal level variable

components. However, most compensation methods require more circuit area and

more complex design than the dominant pole approach used in the classic op amp

architecture. Special problems of integrated circuit amplifiers which include lack of

large sized capacitors, parasitic coupling, and package parasitics and on/off chip load

problems make the compensation more difficult than discrete component amplifiers.

The most widely used method of compensating integrated circuit op-amps is

undoubtedly pole splitting in which the amplifier stage with the smallest bandwidth

is further narrow-banded by a compensating capacitor that creates a well-defined

dominant pole that sets both open and closed loop bandwidth of the overall amplifier.

This method was featured in the original 741/101 bipolar op-amps designed by Robert

Widlar and was widely mimicked in later CMOS op amp designs. This method of

compensation is in fact so ubiquitous in the integrated circuit industry that most

modern textbooks on integrated circuit op amp design do not include discussion of

any alternative methods of compensation.

This thesis is concerned with the compensation techniques for operational

amplifiers and will explore new and novel methods of achieving compensation in

feedback amplifiers that do not limit the bandwidth of closed loop performance to

the same degree that commonly used methods do. Specific tools and methodologies

will be developed to allow comparison of the new methods with standard methods of

compensation. The proposed active feedforward is used to compensate the multistage

operational amplifier with good phase margins as well as drastic improvement of the
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bandwidth of the amplifier compared to the most widely used pole splitting Miller

capacitor compensation approaches.

As mentioned above, the trend for low power applications demands novel op

amp architectures. In control and instrumentation applications where high accuracy

is required, high gain op amp designs are necessary. Other high-gain CMOS op amps

have been investigated in previous work [8–14], but most were unable to achieve gains

higher than 100 dB. A few achieved a gain ranging from 120 dB to 130 dB. These

CMOS op amp designs use up to 5 cascaded gain stages to achieve the high gain. The

highest reported was the simulated 140 dB in [10]. In general, high gain architectures

need more complicated compensation to stabilize the op amp and generally require

more than one compensation capacitor.

This thesis discusses the design of a high gain, general purpose op amp with

the structural simplicity of the classical Widlar architecture. The proposed op amp

structure applies composite cascode connections in both the input stage and the

second stage to achieve a gain of around 120 dB with low power consumption. The

op amp employs the traditional two gain stages followed by a near unity gain buffer

stage. This op amp overcomes some limitations of conventional CMOS cascodes by

enhancing the gain without using additional bias circuits and requires only a small

bias headroom voltage.

Analog circuit design requires a good understanding of how the system and

circuit work. Unlike digital circuitry which works with two distinct states, many

parameters are under consideration for analog circuits which work with continuous

values. Digital circuit design may be quickly validated on a computer with the help

of well-developed CAD tools. Due to the multi-dimensional variables of an analog

circuit, any slight change in the analog configuration like current, voltage, a transistor

parameter, a device model, a manufacturing process, or a modified layout may cause

significantly different performance. In general, this low level device modeling makes

analog design more complicated and challenging than digital design. For analog design

engineers, a good design methodology including intuition, mathematical methods, and
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system level simulation combined with device level simulation is essential for creative

analog designs. The proposed mixed mode design methodology, which is comprised

of mathematical derivation, system level simulation, and device level simulation, will

be demonstrated in this thesis.

1.1 Research Contributions

Several original contributions are made and documented in this dissertation.

It covers improved frequency compensation for general purpose operational amplifiers

and suggests a creative architecture of a high gain low power operational amplifier

with composite cascode connections. Moreover, an experimental prototype of the

composite cascode op amp has been fabricated in TSMC 0.25µm process to verify

the low current design exploiting subthreshold transistor operation along with strong

inversion operation. In addition, a mixed mode design method combining the system

level and device level simulations for innovative analog circuit design is also suggested.

A detailed description of the contributions will appear in the corresponding chapters.

• Current Compensation Methods Investigation

Though compensation has been a well-studied topic of analog circuit design

for many years, an up-to-date comparison and investigation of modern compensation

methods has not been done. This survey summarized some popular compensation

methods used in op amps and pointed out their advantages and disadvantages. A

guide on how to to use different compensation methods based on the output load and

other specifications is given.

• Feedforward Compensation Method

This proposed feedforward compensation method is fully compatible with the

classical general purpose operational amplifier configuration. This architecture also

has the advantage of stabilizing the op amp without reducing the bandwidth as much

as most commonly used compensation methods do.

• System-Level and Combined Device/Transfer Function Simulation Method-

ology
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A design method which integrates intuition, mathematical derivations, system

level simulations, and combined device/transfer function simulations is introduced.

The proposed system-level and device-level mixed-mode simulation can give insights

of creative thoughts, and simplify the analysis by using ideal blocks for some circuitry

while providing necessary device model properties.

• Stability Analysis of the Feedforward Architecture

A closed loop stability criteria is derived and a design guideline for maximally

flat frequency response is suggested to provide circuit stability. Mathematical deriva-

tions along with simulation results are presented to correlate the theory with the

implementation.

• MOSFET in Subthreshold Inversion Used for Low Power Op Amp Designs

Operating a MOSFET in the weak inversion region or subthreshold region is

very useful for low power applications. A wise choice of the quiescent current as well

as the proper W
L

aspect ratios of the transistors can make some of the devices operate

in the strong inversion region while other devices operate in the subthreshold region.

A current mirror using the composite cascode connection is also proposed to bias the

circuit.

• Architecture of A High gain Composite Cascode Operational Amplifier

A two-gain stage op amp which consists of a differential input composite cas-

code stage operating at a bias current of 3.65 µA and a common source composite

cascode second stage provides an open loop gain around 120 dB with 110 µW power

consumption. With the high output impedance and the low current of the composite

cascode connections, a high gain stage is possible with small chip area and power

dissipation. This high impedance load also leads to flexible and simple compensation

schemes. A phase margin of 43◦ is achieved using conventional Miller compensation

with a capacitor of only 3.5 pF while driving a 100 pF load. A journal paper on this

part of the research has been submitted.

• Modified Composite Cascode Operational Amplifiers for Different Applica-

tions
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The proposed op amp which employs composite cascode connections for both

differential input stage and second gain stage along with a source follower output

stage could be easily modified to adapt to different operating conditions. The second

stage could be implemented with a regular common source stage to increase the

bandwidth. The source follower stage could be replaced with a class AB output stage

for rail-to-rail output swing.

• Practical Test Methods of High Gain Op Amps

As commonly known, it becomes more difficult to measure the op amp charac-

teristics, especially the open loop gain, as power supply voltages continue to decrease.

When the multiplication of input referred noise and the open loop gain of the op

amp [6, 15] exceeds the power supply voltage, it is difficult to directly test the open

loop gain of the op amp. In addition, if the signal magnitude is smaller than the noise

magnitude at the input, the output waveform would have little meaning. This work

deals with the practical bench test of the open loop gain of the op amp and presents

several simple but reliable test methods of op amp open loop gain using typically

available bench test equipment.

1.2 Dissertation Outline

The research presented in this dissertation covers studies related to the fre-

quency compensation methods of operational amplifiers, gain boosting schemes of

operational amplifier design, and low voltage low power analog circuit design. Each

chapter presents the analysis of the problem and the development of solutions. A

brief outline of each chapter is described below.

Chapter 2 covers the general background information for frequency compen-

sation. The basics of the feedback control stability theory associated with negative

feedback amplifiers are reviewed. Other existing frequency compensation methods

are discussed with their suitability for different circumstances.

Chapter 3 proposes an active feedforward compensation technique to overcome

the bandwidth reduction resulting from commonly used compensation methods like
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pole splitting. The guidelines of the compensation method are derived through a

stability analysis. A mixed mode design methodology is applied to analyze the com-

pensation approach. The design methodology integrates intuition and mathematical

analysis along with the system/device level simulation.

In Chapter 4, three different inversion regions of MOSFET operation are re-

viewed and different op amp gain boosting techniques are introduced. Besides multi-

stage amplifiers with more than three gain stages, conventional cascode, folded cas-

code, and enhanced impedance methods are investigated along with their advantages

and limits. The limit of low voltage analog design is discussed with a few possible

low voltage design techniques.

In Chapter 5, the high gain lower power operational amplifier with compos-

ite cascode connection is proposed. The subthreshold operation of the MOSFET is

emphasized in the composite cascode application. The hardware implementation of

the op amp prototype is demonstrated. Measured results are presented along with

the simulation results to demonstrate the performance of this op amp design. The

variations of the operational amplifier architecture for different circumstances are also

discussed in this chapter.

Chapter 6 addresses the issues of testing and characterizing the high gain low

voltage op amps. The challenge of measuring the gain of high gain op amps increases

as the power supply voltages decrease. Several simple bench test methods are investi-

gated and proposed to characterize the op amp characteristics, in particular the open

loop gain. These practical techniques do not require sophisticated instrumentation

or complicated lab setup. The setup of the test and the debugging of the practical

problems encountered in test are presented.

Lastly, Chapter 7 contains a summary of the research presented. Contributions

are enumerated again and possible directions of future research are discussed.
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Chapter 2

Frequency Compensation Techniques

2.1 Introduction

In general, operational amplifiers are amplifiers with an open loop gain high

enough to ensure the closed loop transfer characteristic with negative feedback is

approximately independent of the op amp gain. An adequately high gain is the key

requirement of an op amp to utilize the negative feedback configuration.

2.2 Feedback Circuit Theory

Fig. 2.1 shows a general negative feedback system, where A is the forward gain

network and F is the feedback network from the output back to the input terminal.

The feedback signal Vf (s), which is equal to F(s)Vo(s), is subtracted from the source

signal Vi(s) to generate the feedback error signal Ve(s), which is the input to A. That

is

Ve(s) = Vi(s) − F (s)Vo(s). (2.1)

Thus,

Vo(s) = A(s)(Vi(s) − F (s)Vo(s)) (2.2)

(2.3)
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and

G(s) ≡ Vo(s)

Vi(s)
=

A(s)

1 + A(s)F (s)
. (2.4)

A(s)

F(s)

Vo(s)Vi(s)

Vf(s)

Ve(s)

Figure 2.1: General negative feedback system

The quantity A(s)F(s) is called the loop gain and is equivalent to the trans-

mission around the feedback loop. As represented by the configuration of a feedback

amplifier in Fig. 2.1, A(s) is usually the open loop transfer function and G(s) is the

closed loop transfer function. If the loop gain is very high, G(s) is mainly controlled

by the feedback network F(s) since G(s) ≈ 1
F (s)

when A(s)F (s) � 1.

The negative feedback decreases the gain, but it provides a few other benefits

such as gain desensitivity, bandwidth extension, impedance modification, and nonlin-

earity reduction. A sensitivity factor is defined in terms of the differential change of

a dependent variable divided by the differential change of an independent variable.

Assume G is a function of A, the sensitivity of G relative to A is

SG
A =

∂G
G
∂A
A

=
A

G

∂G

∂A
. (2.5)
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The sensitivity of G in Eq. (2.4) following Eq. (2.5) is derived as

SG
A =

1

1 + AF
. (2.6)

In the open loop situation, the sensitivity SG
A is one since there is no feedback and F

equals zero. It is clear that negative feedback reduces the sensitivity of the feedback

amplifier to the variations of the amplifier gain A by the factor 1+AF. The overall

gain becomes very stable as 1+AF approaches large values.

The sensitivity of G with respect to the changes in the feedback factor F is

SG
F = − AF

1 + AF
≈ −1. (2.7)

The sensitivity SG
F is less advantageous compared to SG

A since SG
F approaches minus

one. This result is straightforward since the overall gain is mainly determined by F.

To improve the behavior of the system, the feedback network F must be less sensitive

to device parameters than the amplifier A. Fortunately, this is the case for most

circumstances since the feedback network F usually consists of stable passive devices

rather than the active devices of the amplifying element.

Certain configurations of feedback amplifier extend the bandwidth over the

open loop amplifier. Assume the amplifier A has a one pole transfer function

A(s) =
A0

1 + s/p0

, (2.8)

where A0 is the midband gain of the amplifier and p0 is the 3-dB bandwidth. Applying

Eq. (2.4), the closed loop gain is found to be

G(s) =

A0

1+s/p0

1 + A0F
1+s/p0

(2.9)

=
A0

1+A0F

1 + s
(1+A0F )p0

. (2.10)
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The 3-dB bandwidth is increased from p0 to (1+A0F )p0 at the cost of a proportional

reduction in the gain. Eq. (2.10) implies that the gain-bandwidth product of a one

pole system is a constant with feedback, which allows gain and bandwidth to trade

off directly by feedback.

Feedback also changes the circuit input and output terminal impedances. With

voltage or current quantities as output signals, the feedback networks used to sense

the output signal are defined as voltage (shunt) or current (series) connections at

the output respectively. With voltage or current quantities provided at the summing

terminal, the connections are defined as voltage (series) or current (shunt) types at the

input. The voltage (shunt) feedback at the output decreases the output impedance

while the current (series) feedback at the output enhances the output impedance.

On the other hand, the input impedance to the voltage (series) feedback amplifier is

raised while the current (shunt) feedback at the input decreases the input impedance.

In conclusion, series feedback increases the impedance while shunt feedback decreases

the impedance for both the input and output terminals. Different feedback circuits

could be chosen if higher or lower impedance is desired.

Another important effect of a negative feedback system is the reduction of the

nonlinearity in analog circuits. There is always nonlinear distortion of the circuits

because of the nonlinear amplifying devices. When the nonlinearity is small, the

input-output transfer curve is approximately linear. But for large signal swings,

the output shows a distorted shape. The change of the small signal gain with the

input dc level demonstrates the nonlinear property of the amplifier circuit. The static

nonlinearity is denoted as the maximum deviation of the curve from the ideal straight

line

% nonlinearity =
∆Vmax

Vout,max − Vout,min

. (2.11)

Where Vout,max represents the maximum value of the output signal, Vout,min means the

minimum value of the output signal, and Vmax is the maximum difference between

the actual output curve and the straight line drawn from Vout,min to Vout,max.
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We can express the nonlinear transfer function Vo = f(Vi) by a Taylor series

expansion about the quiescent point VoQ = f(ViQ) as

Vo = VoQ + (Vi − ViQ) · dVo

dVi

|
Vi=ViQ

+
(Vi − ViQ)2

2!
· d2Vo

dVi
2 |

Vi=ViQ

+ · · · (2.12)

= VoQ + a1(Vi − ViQ) + a2(Vi − ViQ)2 + · · · . (2.13)

Applying a single sinusoidal input around the quiescent point (ViQ) to the

nonlinear circuit induces an output spectrum consisting of the input fundamental

frequency as well as higher order harmonics. Assuming Vi = ViQ + vicos(ωt) and

applying Eq. (2.13) gives

Vo − VoQ = a1vicos(ωt) + a2vi
2 1 + cos(2ωt)

2
(2.14)

+a3vi
3 3cos(ωt) + cos(3ωt)

4
+ · · ·

and

Vo − VoQ = (
1

2
a2vi

2 + · · · ) (2.15)

+(a1vi +
3

4
a3vi

3 + · · · )cos(ωt)

+(
1

2
a2vi

2 + · · · )cos(2ωt)

+(
1

4
a3vi

3 + · · · )cos(3ωt) + · · · .

Eq. (2.16) can be rewritten in a simplified form

Vo − VoQ = A0 + A1cos(ωt) + A2cos(2ωt) + A3cos(3ωt) · · · , (2.16)

where the term A0 shows a dc part introduced to the output signal by the even order

harmonics due to nonlinearity and represents the shift from the ideal quiescent out-

put VoQ. A2, A3, · · · represent the amplitudes of higher order harmonic components

generated by the nonlinear transfer characteristic. This property is called “harmonic
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distortion” and this dynamic nonlinearity can be expressed by “total harmonic dis-

tortion” (THD) in the following form

THD = 10 log
power in harmonics

power in fundamentals
(2.17)

= 10 log
A2

2 + A2
3 + · · ·

A2
1

. (2.18)

Harmonic distortion is undesirable in most applications. A THD of about 0.01% (-80

dB) is essential for high quality audio products and a THD around 0.1% (-60 dB) is

necessary for video products.

As mentioned, nonlinearity can be regarded as the variation of the small signal

gain with the input dc level. Negative feedback keeps the overall closed loop gain

nearly constant and almost independent of the amplifier open loop gain. This means

that negative feedback reduces distortion resulting from the change in the slope of the

amplifier transfer curve. Mathematical analysis of the effect of a feedback system on

the nonlinearity of a circuit is very complex and can be found in [16,17]. The second

order harmonic typically causes more distortion than the other harmonics and it is

one of the reasons that the input differential stage is popularly used in order to get

rid of the even harmonics.

2.3 Stability of Feedback Systems

Negative feedback is widely used due to the properties discussed in the preced-

ing section, such as gain desensitization, bandwidth extension, impedance modifica-

tion, and nonlinearity reduction. Nonetheless, the negative feedback on the frequency

response of a circuit may lead to instability. The feedback circuit may oscillate.

The closed loop transfer function of the feedback system shown in Fig. 2.1 is

expressed as Eq. (2.4). If F(s) is independent of frequency, it can be simplified as F.

Eq. (2.4) can now be expressed as

G(s) =
A(s)

1 + FA(s)
. (2.19)
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If FA(s)|(s=jω1) = −1, the overall gain approaches infinity. In this case, the system is

not stable since any small noise will be amplified till the circuit starts to oscillate even

without the presence of an input signal. This unstable condition called “Barkhausen’s

Criteria” is expressed as

|FA(jω1)| = 1 (2.20)

and

∠FA(jω1) = −180◦. (2.21)

When ∠FA(jω1) = −180◦, the total phase shift at the inverting input is 0◦ or 360◦

since the negative feedback already provides 180◦ phase shift. This means that the

original negative feedback at low frequency becomes positive feedback at some higher

frequency ω1. In this situation, if the loop gain at this frequency is greater than unity,

the signal will be amplified to cause oscillation.

The necessary and sufficient requirement for a feedback system to be stable

is that all the poles of the overall closed loop transfer function have negative real

parts. On the Laplace plane, this demonstrates that all the poles of the system are

in the left half plane. It may be difficult to analyze the stability of a complex system

from the closed loop poles since finding the zeros of the denominator 1+FA(s) of the

overall transfer function is complicated. It is more straightforward if we can predict

the closed loop stability from the open loop frequency response since the poles of the

open loop transfer function are usually known.

The Nyquist criterion is applied to determine the stability of the feedback

system. The Nyquist diagram is a plot which shows the change of the loop gain

FA(s) in magnitude and phase with respect to frequency ω on a polar plot. If all the

poles of the loop gain are in the left half plane, a feedback system is unstable if the

Nyquist plot of the loop gain encircles the point (−1, 0). It is clear that Barkhausen’s

criteria is a simpler version of the Nyquist criterion.
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Measuring the phase margin (PM) of the open loop gain response is a good

quantitative way to express the degree of the stability of a feedback circuit. As shown

in Fig. 2.2, the phase margin is specified as 180◦ plus the actual phase shift at the

unity gain frequency ωt where |FA(jωt)| = 1. The PM must be greater than 0◦ for no

oscillation to occur. Gain margin (GM) is defined as the gain difference between the

cross over frequency and the phase crossover frequency at which the phase reaches

−180◦. Both phase margin and gain margin are effective in predicting the stability

of a feedback circuit. In the later sections, it is seen that the phase margin is one of

the guidelines for designing and compensating operational amplifiers.

|AF|dB

0
w

w

-180

phase

PM

Figure 2.2: Phase Margin Plot

Root-Locus is one methodology used to judge the feedback amplifier stability

and guide the compensation using frequency domain responses. Root-locus is the

locus of poles traced by a feedback system as the constant part of the loop gain varies

from zero to infinity. This technique involves the movements of the poles and zeros

of the feedback amplifier in the s plane with respect to the variation of the loop

gain. Rules have been established [15] to outline the root locus without complicated

calculation of the positions of the poles.
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2.4 Basic Frequency Compensation Techniques of Operational Amplifiers

The single stage amplifier typically has good frequency response and could

achieve a phase margin of 90◦ assuming the gain bandwidth is ten times higher than

the single pole. However, the dc gain of the single amplifier is generally not high

enough and is even less for submicron CMOS transistors. In general, op amps require

at least two gain stages. As a result, op amp circuits have multiple poles. The poles

contribute to the negative phase shift and may cause ∠FA to reach −180◦ before

the unity gain frequency. The circuit will then oscillate due to the negative phase

margin. It leads to the necessity of altering the amplifier circuit to increase the phase

margin and stabilize the closed loop circuit. This process is called “compensation”.

By intuition, two different approaches may be taken to stabilize the circuit. The most

straightforward way is to make the gain drop faster in order for the phase shift to

be less than −180◦ at the unity gain frequency. This method achieves stability by

reducing the bandwidth of the amplifier. The most popular pole splitting method uses

this procedure. Another compensation method pushes the phase crossover frequency

out by decreasing the total phase shift. In this case, the number of the poles of

the op amp needs to be minimized while still providing enough gain. Pushing the

phase crossover frequency out is the basic idea of approaches like introducing zeros

to cancel the poles or using feedforward paths to improve the phase margin without

narrow-banding the bandwidth as much as the pole splitting method does. As shown

in later sections and chapters, the feedforward method modifies the open loop transfer

function or the closed loop transfer function to increase the phase margin.

2.4.1 Parallel Compensation

Parallel compensation is a classical way to compensate the op amp. A capaci-

tor is connected in parallel to the output resistance of a gain stage of the operational

amplifier to modify the pole. It is not commonly used in the integrated circuit due

to the large capacitance value required to compensate the op amp, which costs con-

siderable die area.
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2.4.2 Pole Splitting - Single Miller Compensation (SMC)

Early in 1967, Widlar designed the LM101/741 [18] op amp which employed

the pole splitting frequency compensation method. This method was first used in

Bipolar architecture and widely imitated in later CMOS op amp designs. It is covered

in many articles and textbooks [15,19]. In 1974, Solomon reported a tutorial study on

the monolithic op amp [20] and discussed the pole splitting technique. By putting a

compensation capacitor between the input and output nodes of the second inverting

stage of the op amp, the dominant pole is created due to Miller [15,21] feedback. This

method maintains a high midband gain for the op amp since the capacitor does not

affect the dc response of the amplifier. Fig. 2.3 shows the standard SMC topology.

-Av1 -Av2
Vin Vout

Cm

CL

Figure 2.3: SMC

As the transistor gain of the second stage increases, the dominant pole de-

creases and the nondominant pole increases. In this way the two poles are being

split apart and stabilize the feedback amplifiers by greatly narrowing the bandwidth.

This simple pole splitting method also introduces a right half plane zero which causes

negative phase shift, as a result, the stability is made a little poorer. The zero comes

from the direct feedthrough of the input to the output through the Miller capacitor.

To eliminate the RHP zero due to the feedthrough and increase the phase margin of

the op amp, lead compensation which adds a nulling resistor in series with the com-

pensation capacitor (SMCNR) to increase the impedance of the feedthrough path is
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reported [4, 15]. Leung and Mok [22] investigated the effect of the nulling resistor to

the positions of the poles as well as that of the zero and pointed out the pole splitting

would break down if the resistor becomes too big. When the resistor gets very large,

there is no pole splitting since the compensation capacitor is actually open circuit.

Fig. 2.4 shows the popular SMCNR structure.

-Av1 -Av2
Vin Vout

Cm

CL

Rm

Figure 2.4: SMCNR

2.5 Other Multistage Operational Amplifier Compensation Techniques

Many gain boosting schemes have been reported [5] to improve the gain. In

general, these gain enhancing designs require more complicated circuit structure and a

larger power supply voltage, but generate smaller output swing. As a result, multiple

stage amplifiers might be more suitable for low power, low voltage, high density analog

circuit designs. The frequency response of the multistage amplifier is not as good as

that of the single stage and this amplifier has a higher probability of oscillation in

feedback circuits. One popular way to predict the closed loop stability is by measuring

the phase margin of the open loop gain response. PM must be greater than 0◦ for no

oscillation to occur. A good performing amplifier will need a PM of about 45◦ to 60◦.

Otherwise, the amplifier may exhibit ringing in the time domain and peaking in the

frequency domain [15,23].
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2.5.1 Nested Miller Compensation (NMC) and the Variants

Multistage amplifiers have more poles and zeros than do single stage amplifiers.

The frequency response and time response are far more complicated than those of the

single stage op amps. As a result, all multistage amplifiers suffer closed loop stability

problems. Single Miller compensation is used for the simple two-stage amplifier; while

the extended version of the SMC compensation, nested Miller compensation (NMC)

[15, 22, 24] is applied to amplifiers with three or more stages. Because of the rapid

bandwidth reduction, op amps with more than four stages are rarely investigated.

NMC exploits the nested structure of feedback capacitors to cause the pole splitting

compensation. There are some drawbacks related to the NMC approach. The total of

N-1 nested compensation capacitors must be placed between the dominant node and

the other nodes to split the individual poles from the dominant output pole to stabilize

an N stage op amp. Fig. 2.5 shows the structure of a three stage NMC op amp. The

nesting topology of the compensation capacitor reduces the bandwidth substantially

[5,24,25]. The specific configuration requires the compound noninverting gain stages

to connect to the inverting output stage in order to secure negative feedback for the

nested compensation loops. The necessity to drive the compensation capacitors along

with the capacitive load requires the output stage to have a high transconductance to

attain wide bandwidth and high slew rate. Consequently, elevated power consumption

is unavoidable especially for large load capacitor.

-Av1 +Av2
Vin Vout

Cm1

CL

-Av3

Cm2

Figure 2.5: NMC
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To address the bandwidth degradation problem, the variations of the NMC

are developed. NMC using nulling resistor (NMCNR) [4, 15], reversed nested Miller

compensation (RNMC) [19], multipath NMC (MNMC) [5, 22, 24, 26], hybrid NMC

(HNMC) [5], nested Gm-C compensation (NGCC) [27] have been presented.

RNMC improves the bandwidth over NMC by the reversed compensation

topology compared to NMC as shown in Fig. 2.6.

-Av1 -Av2
Vin Vout

Cm2

CL

+Av3

Cm1

Figure 2.6: RNMC

The RNMC technique sets the second gain stage negative and the output stage

positive. The Miller capacitor loop is around the second stage without connection to

the considerable output capacitive load. HNMC combines the NMC and the RNMC

topological properties in a multistage (above three) op amp. In this circumstance,

the circuit could consist of only inverting amplifier except for the input stage.

The difference between NMC and MNMC is the added feedforward amplifier

stage -Af1 connected between the input of the first stage and the input of the last

stage of the multistage op amp as shown in Fig. 2.7. The feedforward stage added

can produce a LHP zero to counteract the second nondominant pole to broaden

the bandwidth. The increased circuit complexity and power consumption should be

considered. Moreover, the pole zero doublets may seriously degrade the settling time

of the amplifier [28].
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-Av1 +Av2
Vin Vout

Cm1

CL

-Av3

Cm2

-Af1

Figure 2.7: MNMC

The difference between NGCC and MNMC is that NGCC replicates the feed-

forward Gm N-1 times for an N stage op amp recursively as shown in Fig. 2.8 .

Compared to MNC, NGCC has simpler stability conditions due to the much simpler

transfer function which makes the op amp design more facile.

-Av1 +Av2
Vin Vout

Cm1

CL

-Av3

Cm2

-Af2

+Af1

Figure 2.8: NGCC

The basic idea of most of these variations of the NMC schemes is not to

drop the overall bandwidth of the multistage amplifiers by the pole zero cancellation

in the passband caused by the feedforward path of the multipath topology. All of

those compensation techniques mentioned above use Miller capacitors whose sizes are

related to the load capacitor value. The required sizes of the compensation capacitors
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would escalate with larger capacitive loads which make these techniques not suitable

for low area need. The experimental results of the varied versions of NMC showed

that the bandwidth does not get improved significantly for considerable capacitive

loads [19,22].

2.5.2 Single Miller FeedForward Compensation (SMFFC)

Many compensation techniques mentioned above are not suitable for large

load capacitors. The demand for lower power consumption, lower chip integration

area, capability for driving large capacitive loads, and stable high gain bandwidth of

amplifiers calls for improved frequency compensation patterns. The topologies using

a single Miller capacitor in three stage amplifiers could greatly reduce the needed

sizes of the compensation capacitors compared to NMC related schemes and result

in amplifiers with smaller chip area. The presented SMFFC and the modified SMC

with the additional feedforward path from the output of the first stage to the output

load stage [27] are designed for a particular three stage amplifier specifically in the

case of large capacitive loads. The topology of the SMFFC op amp is represented in

Fig. 2.9. Instead of using pole zero cancellation, SMC with one forward path adopts

the separate pole approach [22] for compensation in the situation of large capacitive

loads. SMFFC employs two forward paths and provide a LHP zero to compensate the

first nondominant pole to alleviate the bandwidth reduction and improve the phase

margin. The strictly rational selection of gains among the three stages is the key

point for this SMFFC scheme. For the gain distribution like Av1 � Av2 ≥ Av3, the

second and third poles of the amplifier would be placed at higher frequencies that

lead to a coarse single pole system for an easier frequency compensation strategy.

The appropriate selection of the moderate gain of the second stage will then decrease

the compensation capacitor size. Unfortunately, this method does not truly resolve

the compressed gain bandwidth issue due to the super high gain of the first stage and

the nature of the pole separation. Gain enhanced feedforward path compensation
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-Av1 +Av2
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Cm

CL

-Av3

-Af2

-Af1

Figure 2.9: SMFFC

(GFPC) [29] is much like the modified SMC version with one feedforward path, but

for two stage amplifiers.

2.5.3 Nonstandard NMC Schemes

The nonstandard NMC topologies have been investigated to deal with the

drawbacks with the NMC and MNMC in order to be able to drive large capacitive

loads. The reported strategies include damping factor control frequency compensation

(DFCFC) [30], embedded RC compensation (ERC) [25], active feedback frequency

compensation (AFFC) [31], and dual loop parallel compensation (DLPC) [32, 33].

The ERC duplicates the RC compensation process N-2 times for an N stage op amp.

ERC compensation circuits do not load the output stage as NGCC circuit do. The

noninverting gain stages are not necessary in ERC as in NMC or the standard vari-

ations of NMC. ERC topology extends the bandwidth via the zero pole cancellation

through the embedded compensation network without connection to the output load.

Usually ERC uses a low gain, high conductance output stage to have the similar load-

ing isolation benefit as the buffer output stage of the Widlar architecture. DFCFC

can substantially improve the bandwidth of a three stage amplifier with good fre-

quency and transient responses when driving large capacitive loads. But it is not so

effective for small capacitive load applications. Some other compensation methods

turn out to be more suitable than DFCFC when driving a small capacitive load.
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2.5.4 No Capacitor Feed Forward (NCFF)

One feedforward compensation scheme for multistage operational transcon-

ductance amplifiers with no Miller capacitors is proposed by Thandri and Silva-

Martinez [34]. This NCFF method applies the feedforward path as shown in Fig.

2.10 to create LHP zeros. By using the positive phase shift of LHP zeros to cancel

the negative phase shift of the poles, a high gain, high bandwidth amplifier with a

good phase margin is developed. Thandri does mention some design considerations

of the NCFF in the paper. For example, the feedforward and second stage must place

the nondominant poles after the overall unity gain frequency of the amplifier to alle-

viate phase deduction; the pole zero cancellation should happen at high frequencies

to achieve better time domain response. Some other constraints of the NCFF scheme

not directly specified in the paper should also be recognized. The NCFF is not suit-

able for big capacitive loads as a result of the main design consideration mentioned.

The transient response might be degraded severely by the pole-zero doublets [28]. A

good performing amplifier should have both good frequency response and transient

response. The complexity of the presence of extra poles and zeros can cause the design

of the NCFF scheme to be very difficult and the undesired low frequency pole-zero

doublets may lengthen the settling time of the amplifier or even make the closed loop

unstable.

-Av1 +Av2
Vin Vout

CL

+Av3

-Af1

-Af2

Figure 2.10: NCFF
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2.5.5 Negative Miller Capacitance Compensation (NMCC)

The negative Miller capacitance compensates high speed CMOS op amps [35]

that consists of an operational transconductance amplifier (OTA) and a buffer. The

buffer with a dc gain of A is used to detach the OTA from the load. The OTA is

compensated with a capacitor Cc connected between the input and output of the

buffer. Assuming the op amp drives a load with a parallel combination of a resistor

RL and a capacitor CL, the effective capacitance seen at the input of the buffer is

Cin = Cc(1−A) and Cout = CL +Cc(1− 1
A
) at the output of the buffer. Since the gain

of the buffer is positive and smaller than one, the reflected Miller capacitor Cc(1− 1
A
)

at the output will be negative. The total effective output capacitance is reduced to

be smaller than the original load capacitance due to the negative Miller capacitance.

NMCC can be applied to drive a large capacitive load. The experimental results show

that the NMCC design shifts the first nondominant pole to a higher frequency while

keeping the position of the dominant pole almost the same. This NMCC scheme

could increase both the bandwidth and phase margin.

Comer et al. [36] proposed a CMOS amplifier bandwidth extension method

by utilizing a negative capacitance circuit. Negative capacitance can be generated

by active circuitry using the Miller effect. The limitations of current IC technolo-

gies restrain the use of inductors and only small capacitors are available. With the

innovative negative capacitor idea, compensation practice could shape the frequency

response with more freedom.

2.6 Conclusion

This chapter introduces the background of feedback systems and the frequency

compensation techniques for feedback operational amplifiers. To stabilize op amps,

the common techniques are pole splitting and pole zero cancellation using a capaci-

tor and resistor [3, 7]. This section discusses and compares the existing methods of

achieving compensation for multistage amplifiers. It points out the advantages and

disadvantages of the different compensation topologies in order to help the op amp
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designers better understand and choose the appropriate structure for different circum-

stances. Some previous solutions are shown to illustrate the design issues related to

the respective compensation configuration and to provide the necessary background.
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Chapter 3

Creative Feedforward Op amp Compensation Design

3.1 Introduction

The operational amplifier is probably the most popular building block in ana-

log circuits. As mentioned in chapter 2, the conventional pole splitting method [20]

puts a compensation capacitor between the input and output nodes of the second

inverting stage of the op amp to break away the two poles due to the Miller feedback.

The dominant pole is created to stabilize the feedback amplifiers by further narrow-

ing the small bandwidth. As presented in chapter 2, most modern compensation

methods require specific design for the corresponding compensation topology and in

general some particular design conditions are imposed. For example, the first gain

stage must have a gain much higher than the other stages or the second nondominant

pole must be set above the unity gain frequency. These requirements complicate the

circuit design and make the compensation configuration not very suitable for the gen-

eral purpose op amp. A creative compensation methodology which can stabilize the

op amp without sacrificing the bandwidth too much but is also compatible with the

classical op amp architecture would be useful. This thesis proposes an active feed-

forward compensation scheme which is suitable for the usual op amp structure with

two gain stages followed by a buffer stage. This compensation scheme does not limit

the bandwidth of the amplifiers as the most widely used pole splitting Miller capac-

itor compensation approach does. Instead, the new method stabilizes the feedback

amplifiers by increasing the gain bandwidth as well as the phase margin.

A single stage amplifier has good frequency response and good phase margin.

But the dc gain of the single amplifier is not high enough and is further reduced by
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the short-channel effect of submicron CMOS transistors. As a result, a modern high

gain op amp requires at least two gain stages. Due to the many poles and zeros of

multistage amplifiers, their frequency response and time response are far more com-

plicated than those of single stage op amps. All uncompensated multistage amplifiers

suffer closed loop stability problems and need compensation. A multistage op amp

with more than three gain stages is uncommon because of the highly increased com-

plexity of compensation. Many compensation schemes for multistage amplifiers have

been investigated and reported [3–5,7]. Chapter 2 of this thesis gives a detailed sur-

vey of the current compensation methods and points out their suitability for different

situations.

Pole splitting, the most often used compensation technique, rolls off the gain

before the phase lag becomes too great. The common method of pole splitting is

to use a compensation capacitor between the input and output nodes of the second

inverting stage of the op amp. The dominant pole is created due to Miller feedback.

The negative Miller capacitance compensation method (NMCC) employs the idea to

compensate a high speed CMOS op amp [35] with negative capacitance generated from

the buffer stage by the Miller effect to reduce the original output load capacitance.

While single Miller compensation is applied for the simple two-stage ampli-

fier, the extended version of the SMC compensation, nested Miller compensation

(NMC) [15, 22, 24] is applied for amplifiers with three or more stages. The biggest

weakness of the nesting topology is that the multiple compensation capacitors reduce

the bandwidth substantially [5, 24, 25]. To improve the bandwidth, the variations of

the NMC like NMC using nulling resistor (NMCNR) [4, 15], reversed nested Miller

compensation (RNMC) [19], multipath NMC (MNMC) [5, 22, 24, 26], hybrid NMC

(HNMC) [5], and nested Gm-C compensation (NGCC) [27] have been presented.

Almost all these compensation techniques use Miller capacitors whose sizes are de-

pendent on the load capacitor value, which make them inappropriate for small die

area need.

30



The nonstandard NMC topologies have been developed for large capacitive

loads. The represented strategies include damping factor control frequency com-

pensation (DFCFC) [30], embedded RC compensation (ERC) [25], active feedback

frequency compensation (AFFC) [31], and dual loop parallel compensation (DLPC)

[32, 33]. These techniques result in complicated design, higher power consumption,

and extra die area.

Some novel compensation designs like using a single Miller capacitor in three

stage amplifiers (SMFFC) [27] and no Miller capacitor feedforward compensation

scheme (NCFF) [34] have been proposed since 2003. But the particular design con-

ditions and the intricate positioning problem of the zeros with the poles limit the

application on the general purpose op amp.

The proposed feedforward method is one that can improve the phase response

without deteriorating the bandwidth. The feedforward architecture is much easier

to design compared to other feedforward schemes. It is very convenient to develop

the proposed active feedforward in the classical two-stage operational amplifier with

capabilities to drive large capacitive loads. Most existing op amp structures may be

easily adapted to apply the proposed feedforward configuration. The basic concept

of feedforward is to add a signal with less phase shift to the amplified signal, so that

the resulting output has an improved phase response. Detailed analysis will be given

in the following sections.

3.2 Configuration of the Feedforward Compensation Op amp

To visualize the effect of feedforward compensation on a circuit, it is helpful

to represent the gain and phase of a circuit as a vector. The amplitude and phase

are both frequency dependent. As the frequency increases, the gain drops off and the

phase lag increases. Suppose the vector V1 in Fig. 3.1 represents the output of our

amplifier at some critical frequency. Now a smaller vector V2 with less phase shift is

added to V1, where V2 represents the feedforward signal. The vector sum V3 is seen to

have a magnitude similar to V1, but with less phase lag. V3 represents a performance
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improvement over that of V1. The circuits used in implementing feedforward are

shown in Fig. 3.2. A1 is the amplifier to be compensated. Its gain and phase at the

unity gain frequency have been represented as V1. A2 is the feedforward stage, and it

is designed to generate V2 to have a gain and phase that combine favorably with V1.

Traditionally, passive circuits have been used to generate the feedforward signal. In

this design, active circuits are used due to the wide variety of signals that they can

generate. If a high pass filter is used on the feedforward signal, it can be made to

help at high frequencies without affecting the dc and low frequency accuracy of the

amplifier.

180

270

90

0

V2

V3

V1

Figure 3.1: The phase diagram of feedforward

A1

A2

V1

V2

V3Vi

Figure 3.2: The block circuit of feedforward
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3.2.1 Design Methodology

The design guide here is to apply the feedforward intuition on the system model

and do the mathematical analysis to check if the idea works theoretically. After the

feasibility is verified with theory, the feedforward scheme is then going to be evaluated

by a system level simulation. Many different versions of SPICE simulators already

have built-in system level models of the circuit blocks. System level simulation can

be done within a short time compared to the device level simulation. For accuracy

and other practical issues, a mixed simulation method combining the system level

simulation with the device level simulation is a very efficient and viable way to assess

the creative design method.

3.2.2 System Analysis of Feedforward Compensation

The analysis of the feedforward principle is started with a simplified system

model assisted with mathematical analysis. Feedforward compensation is applied to

the classical operational amplifier structure. A block diagram of a typical two-stage

op amp is shown in Fig. 3.3. “Two stages” specifies the number of the gain stages

in the op amp. A01 and A02 are the dc gains of the differential input stage and the

inverting gain stage respectively. The frequency response of this multistage amplifier

is modeled by cascading the dc gains and the two poles p1 and p2. The resulting open

loop transfer function is

A(s) =
A0

(1 + s/p1)(1 + s/p2)
(3.1)

=
A01A02

(1 + s/p1)(1 + s/p2)
. (3.2)

The corresponding unity feedback closed loop transfer function is

G(s) =
A(s)

1 + A(s)
(3.3)

=
A01p1A02p2

s2 + s(p1 + p2) + (A01p1A02p2 + p1p2)
. (3.4)
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This conventional 2-pole op amp model includes the additional nondominant poles

from the inverting stage and the output buffer stage by patterning all nondominant

poles (the third, fourth, and higher) into a single equivalent secondary pole p2 [4]. In

general, this model works reasonably well if the higher order nondominant poles are

at frequencies greater than the unity gain frequency.

A01

(1+s/p1)

Vi

Vo

A02

(1+s/p2)

A1 A2
Vx

1

Figure 3.3: The typical two-stage operational amplifier model

A system level closed loop model of the feedforward compensation based on

the conventional 2-pole model is shown in Fig. 3.4. The feedforward compensation

consists of a lead network with a transfer function of s
s+ 1

Rf Cf

, a negative wideband

transconductance amplifier −gm, and a feedback resistor Rb.

A01

(1+s/p1)

Vi

Vo

A02

(1+s/p2)

Rf

Cf

Rb

A1 A2
Vx

Vf

-gm

Figure 3.4: Simplified model of the feedforward compensated operational amplifier

The output voltage can be written as Vo = −A2Vx. The output voltage of

the first stage is Vx = −A1(Vi − Vf ). The feedback voltage after the feedforward
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compensation is Vf = Vo − VxgmRb
s

s+ 1

Rf Cf

. Manipulating the above equations results

in

Vx =
Vo

−A2

= −A1(Vi − Vo +
Vo

−A2

gmRb
s

s + 1
Rf Cf

). (3.5)

The closed loop transfer function Gcl(s) = Vo(s)
Vi(s)

of our feedforward compensation

configuration becomes

Gcl(s) =
A1A2

A1A2 + 1 + A1gmRb
s

s+ 1

Rf Cf

, (3.6)

where A1(s) = A01

1+ s
p1

and A2(s) = A02

1+ s
p2

. The closed loop transfer function is given as

Gcl(s) =
A01A02

A01A02 + (1 + s/p1)(1 + s/p2) + A01gmRb(1 + s/p2)
s

s+ 1

Rf Cf

(3.7)

=
A01p1A02p2

s2 + s

(

p1 + p2 + A01p1gmRb
s+p2

s+ 1

Rf Cf

)

+ (A01p1A02p2 + p1p2)

. (3.8)

3.3 Stability Analysis

To simplify the analysis, we assume the pole generated by the lead circuit

1
Rf Cf

equals p2 even though it does not need this constraint in practice. The transfer

function thus becomes

Gcl(s) =
A01p1A02p2

s2 + a1s + a0

(3.9)

where a1 = p1 + p2 + A01p1gmRb and a0 = A01p1A02p2 + p1p2. Since the order of the

denominator in Eq. (3.9) is higher than that of the numerator, the stability condition

can be found from the coefficients of the denominator by applying the Routh-Hurwitz

stability criterion [37].
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The Routh-Hurwitz stability criterion is a necessary and normally sufficient

method to establish the stability of a single-input, single-output, linear time invariant

control system. Certain calculations using only the coefficients of a given polynomial

can determine if the system is stable or not. The criterion establishes a systematic

way to show that the linearised equations of motion of a system have only stable

solutions ept, that is where all p have negative real parts. A tabular method can

be used to determine the stability when the roots of a higher order characteristic

polynomial is difficult to obtain. For an n - th order polynomial with the form of

A(s) = anx
n + an−1x

n−1 + ... + a1s + a0, (3.10)

if any of the coefficients is zero or negative and at least one of the coefficients is

positive, then there is at least one root that is imaginary or that has positive real

parts in the right half plane. Therefore, the system is unstable.

If all coefficients are positive, the “Routh Array” can be formed by arranging

the coefficients in rows and columns as Table 3.1.

Table 3.1: Routh Array

sn: an an−2 an−4 . . .
sn−1: an−1 an−3 an−5 . . .
sn−2: b1 b2 b3 . . .
sn−3: c1 c2 c3 . . .

...
...

...
...

...
s2: d1 d2

s1: e1

s0: f1

The third row elements of the array are computed by

bi =
an−1an−2i − anan−2i−1

an−1

. (3.11)
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The procedure begins with i = 1 and is repeated until bi = 0 for higher values of i.

The fourth row of the array can be calculated by the formula

ci =
b1an−2i−1 − bi+1an−1

b1
. (3.12)

This process continues until f1 has been calculated.

When completed, the number of sign changes in the first column will be the

number of non-negative poles. The Routh-Hurwitz stability criterion states that the

number of roots with positive real parts is equal to the number of changes in sign of

the coefficients in the first column of the matrix. A stable system has all of its poles

in the left half plane. This means that all coefficients ai must be positive and all

terms in the first column of the matrix must be positive for the system to be stable.

The Routh array of this closed loop transfer function is shown in the following

Table 3.2.

Table 3.2: The Routh Array of Proposed Feedforward Compensation

s2: 1 A01p1A02p2 + p1p2

s1: p1 + p2 + A01p1gmRb 0
s0: A01p1A02p2 + p1p2 0

The necessary and sufficient condition for the amplifier to be stable is that all

the coefficients of the denominator must be positive. This gives the stability condition

of amplifiers compensated by the negative transconductance −gm amplifier stage as

gmRb >
−(p1 + p2)

A01p1

. (3.13)
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For the amplifier compensated by the positive transconductance gm amplifier, the

amplifier is stable if and only if

gmRb <
(p1 + p2)

A01p1

. (3.14)

It is apparent that amplifiers compensated by the negative transconductance amplifier

stage automatically satisfy the Routh stability while amplifiers compensated by the

positive transconductance amplifier stage only satisfy the Routh stability for a very

limited range. To ensure stability and facilitate the tuning of the compensation

network to get the best frequency and transient responses, the negative wideband

transconductance amplifier is chosen to be applied for feedforward compensation.

3.3.1 Damping Analysis

A transfer function is given in the form of

H(s) =
A0ω

2
0

s2 + 2ξω0s + ω2
0

=
A0ω

2
0

s2 + ω0

Q
s + ω2

0

, (3.15)

where the damping factor ξ is related to the quality factor Q as ξ = 1
2Q

. The poles

of Eq. (3.15) are given by

p1,2 = −ξω0 ± ω0

√

ξ2 − 1

= − ω0

2Q
± ω0

2Q

√

1 − 4Q2. (3.16)

It is clear that the poles are complex only when the damping factor ξ < 1 or Q > 1
2

and this case is called underdamped. The case of ξ = 1 or Q = 1
2

is called critically

damped and the poles are two identical real numbers. While the case of ξ > 1 or Q < 1
2

is called overdamped and the poles are two distinct real numbers. If ξ = Q = 1√
2
, the

magnitude of the real part of the complex poles equals to that of the imaginary part.

For the second order system, it is said to have maximally flat response.
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3.3.2 Maximally Flat Response

To facilitate the analysis, the closed loop transfer function of Eq. (3.8) can be

written in the form of

Gcl(s) =

A01p1A02p2

A01p1A02p2+p1p2

s2 1
A01p1A02p2+p1p2

+ sp1+p2+A01p1gmRb

A01p1A02p2+p1p2

+ 1
. (3.17)

The poles of this transfer function are typically complex. If the feedforward compen-

sated amplifier in feedback configuration is designed to have maximally flat response,

the denominator of the transfer function should have the format of the second-order

Butterworth polynomial with cutoff frequency w0 as

B(s) = s2

(

1

w0
2

)

+ s

(√
2

w0

)

+ 1. (3.18)

where,

w0 =
√

A01p1A02p2 + p1p2 (3.19)

and

gmRb =

√

2(A01p1A02p2 + p1p2) − p1 − p2

A01p1

. (3.20)

Eq. (3.19) and Eq. (3.20) as well as the assumption 1
Rf Cf

= p2 could be the design

guides to select certain values for maximally flat response. But it is not necessary

for feedforward compensation design to follow these requirements. According to the

specific needs of an application, a variety of choices are available.

3.4 Frequency and Transient Domain Simulation

It is straightforward to make a quantitative comparison of the frequency and

step responses of the different amplifier compensation techniques on op amps with

similar architectures. In order to explain how the different compensation methods
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modify the closed loop transfer function and how the altered poles affect the feedback

amplifier response, a two-stage op amp is used as an example.

3.4.1 Example 1 - Conventional Feedback Amplifier (Uncompensated)

Consider the conventional amplifier of Fig. 3.3 with feedback factor F chosen

to be one. Given the overall open loop dc gain of 5000, assume the first stage has

a gain of 100 with the bandwidth of 1 MHz and the second stage has a gain of 50

with the bandwidth of 2 MHz. This will provide the overall gain of 5000 with stage

bandwidths of 1 MHz and 2 MHz respectively. A frequency normalization factor

which equals to 2π × 106 is assumed. The open loop transfer function is in the form

of

A(s) =
104

(s + 1)(s + 2)
. (3.21)

The frequency in the factorized form of Eq. (3.21) is the normalized frequency wn.

The normalized frequency is related to the actual frequency wact by

wn =
wact

2π × 106
. (3.22)

According to Eq. (3.3), the closed loop gain of the feedback amplifier is then

expressed as

G(s) =
104

s2 + 3s + (104 + 2)
. (3.23)

From Eq. (3.23), the square of the first order coefficient of the denominator of G(s)

is much less than that of the constant term. According to Eq. (3.15), it is obvious

that the unity gain feedback has ξ much less than one and the poles by Eq. (3.16)

are very close to the imaginary axis of the complex plane. As a result, it leads to

underdamping and circuit instability. The simulation results displayed in Fig. 3.5
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Figure 3.5: Uncompensated responses in frequency domain and time domain

(a)Frequency response (b)Transient response

clearly demonstrate the peaking in the frequency domain and ringing in the time

domain.

3.4.2 Example 2 - Pole Splitting (Simple Miller Capacitor Compensation)

If we use SMC to do pole splitting and assume that the smaller pole p1 is

further narrowed down to the dominate pole p1

k
while p2 is kept the same, the closed

loop gain becomes

G(s)SMC =
A01

p1

k
A02p2

s2 + s(p1

k
+ p2) + (A01

p1

k
A02p2 + p1

k
p2)

. (3.24)
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Applying Eq. (3.24), Eq. (3.23) is altered to

G(s)SMC =
104

k

s2 + s( 1
k

+ 2) + (104+2
k

)
. (3.25)

To achieve a maximally flat response, k is chosen to be 5000. The closed loop gain

for this case where the second stage remains unchanged but the first stage is narrow

banded from 1 MHz to 200 Hz (normalized frequency is changed from 1 to 1
5000

)

becomes

G(s)SMC =
2

s2 + 2.0002s + 2.0004
. (3.26)

3.4.3 Example 3 - Proposed Active Feedforward

If 1
Rf Cf

is set equal to p2 and gmRb = 1.3844 for maximally flat response

according to Eq. (3.20), the resulting normalized gain function may then be expressed

as

G(s)FF =
104

s2 + 141.44s + (104 + 2)
. (3.27)

Comparing Eq. (3.27) to Eq. (3.23), the only difference is the first order coefficient

of the denominator. The damping factor ξ changes from 0.03 to 0.707. The change

from 3 to 141.44 of the first order coefficient sets the real parts of the complex poles

away from the imaginary axis and stabilizes the amplifier. The resulting frequency

responses of the SMC method in (3.26) and feedforward in (3.27) are shown in Fig.

3.6.

Since the feedforward scheme stabilizes the op amp without shrinking the

bandwidth, it has higher gain bandwidth compared to the pole splitting SMC method.

Fig. 3.6 shows the normalized bandwidth increment from 224.834 mHz to 15.898 Hz

(denormalized bandwidth increment from 224.834 kHz to 15.898 MHz).
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Figure 3.6: Frequency Responses of SMC and FF

One important parameter of a feedback amplifier is the settling time of the

transient response. The settling time is defined as the time taken for the amplifier to

settle to within a certain percent of its final value in order to avoid errors in processing

signals. A longer settling time means that the analog signal processing speed is low.

Fig. 3.7 shows the 1% settling time of transient response of a negative feedback op

amp.
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1% error

timesettling time

steady value

Figure 3.7: Settling Time of Feedback Op Amp Step Response

These closed loop functions for the SMC circuit (3.26) and the feedforward

circuit (3.27) have transient responses shown in Fig. 3.8.
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1% ST (SMC) = 4.659 s
1% ST (FF) = 65.588 ms
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Figure 3.8: Step Responses of SMC and FF

Due to frequency normalization, the actual time tact is related to the normal-

ized time tn by tact = tn
2π×106 . It is clear that feedforward also achieves faster settling

time. The step responses shown in Fig. 3.8 indicate that the normalized 1% settling

time changes from 4.659 s given by pole splitting method to 65.588 ms given by the

proposed feedforward method (actual settling time changes from 741.5 ns to the much

faster 10.44 ns).

3.5 Open Loop Analysis

One popular way to predict the closed loop stability is by measuring the phase

margin of the loop gain response. In general, a good performing amplifier needs a

phase margin about 45◦ to 60◦ and a gain margin above 10 dB. Otherwise, the ampli-

fier would possibly exhibit ringing in the time domain and peaking in the frequency

domain [15,23].

The proposed feedforward stage does not change the gain from the differential

input stage to the output stage. In fact, the feedforward stage feeds a modified output

instead of the exact output voltage back to the inverting input terminal in order to

change the closed loop transfer function. The ratio of the altered feedback voltage

to the positive input voltage forms the loop gain of the feedforward compensated op

amp. As shown in Fig. 3.4 but with Vf not connected to the inverting input terminal,
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the loop gain Aol(s) =
Vf (s)

Vi(s)
is given by

Aol(s) = A1A2 + A1gmRb
s

s + 1
Rf Cf

. (3.28)

Assuming 1
Rf Cf

= p2, the loop gain leads to

Aol(s) =
A01p1A02p2 + sA01p1gmRb

(s + p1)(s + p2)
. (3.29)

If we treat Aol(s) in Eq. (3.29) like the conventional open loop gain comprised

of the ratio of the output voltage to the input voltage without feedback connected

to the input stage, the resulting closed loop gain from Aol(s) is Gclol(s) = Aol(s)
1+FAol(s)

.

And the closed loop transfer function in the case of the maximum feedback (F = 1)

would be

Gclol(s) =
A01p1A02p2 + sA01p1Rbgm

s2 + a1s + a0

, (3.30)

where a1 = p1 + p2 + A01p1gmRb and a0 = A01p1A02p2 + p1p2. Comparing Gclol(s)

of Eq. (3.30) with Gcl(s) of Eq. (3.9), the only difference is the additional term

A01p1gmRbs which appears in the numerator of Eq. (3.30). It becomes natural that

the open loop parameters of the feedforward amplifier, for example, the phase margin

(PM) and the gain margin (GM) at the unity gain cross over frequency [19, 37] can

still be used to predict proper closed loop behavior of the proposed active feedforward

compensation scheme.

3.6 Generic Op amp Device Simulation Results

After the theoretical fundamental of the proposed feedforward compensation

technique is verified with mathematical analysis and system level simulation, a mixed

simulation which combines system level simulation with detailed device level simula-

tion would be applied to further verify the performance of the design. The behavior

simulation of the system is a very efficient way to test the basic idea of a circuit de-
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sign. But due to the lack of detailed device characterization, sometimes system level

simulation has the tendency to predict the circuit performance in a very idealistic way.

Considering the complicated device physics properties, device level simulation which

uses comprehensive transistor models like the advanced BSIM3 model with over a few

tens of parameters is more accurate to describe and predict the circuit function. But

in general device level simulation is very time consuming and makes designers take

many circuit details under consideration before making the basic circuit work, not to

mention losing the insights of some creative design ideas. A good mixed simulation

with the system level description as well as the accurate device level models for some

critical analog blocks would be productive for implementing ingenious circuit design

and to be able to provide sufficiently accurate circuit performance prediction.

We use the popular 2-stage generic op amp as a vehicle to test the performance

of the different compensation methods. To compare the simulation results between the

conventional pole splitting by Miller capacitor feedback and the proposed feedforward

compensation method, the 2-stage op amp design in [4] is chosen as a test bench. The

schematic of the op amp is shown is Fig. 3.9.

V- V+

M1 M2

M3
M4

M7
M9

M6

VDD

OUT

M11
M5

M15 M13

M14 M12

M10

M8

Figure 3.9: A classical two gain stage op amp
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For SMC pole splitting method, a Miller capacitor Cc is placed between the

input (the gate of M7) and the output (the drain of M7) of the second stage. The

structure of the SMC compensated op amp is shown in Fig. 3.10.

V- V+

M1 M2

M3
M4

M7
M9

M6

VDD

OUT

M11
M5

M15 M13

M14 M12

M10

M8

Cc

Figure 3.10: SMC compensated op amp

The feedforward compensation then replaces the Miller capacitor Cc with

the feedforward stage consisting of the lead network s
s+ 1

Rf Cf

, the negative wideband

transconductance amplifier −gm, and the feedback resistor Rb as shown in Fig. 3.11.

AMI 0.5 µm technology is applied and simulated in PSPICE. The first stage

has a gain of 67.189 with bandwidth of p1 = 108.572 kHz and the second stage has a

gain of 81.209 with bandwidth of p2 = 1.0183 MHz. The overall dc gain is 5456 V/V

with supply voltages of plus and minus 2.5 V. The channel length of the transistors

is chosen to be 1 µm. The output load resistor RL is 5 kΩ and the load capacitor

CL is 20 pF. The compensation Miller capacitor CC is 5 pF for SMC and SMRC.

The lead resistor in series with the compensation capacitor for SMRC is 10 kΩ. The

highpass network parameters are chosen as Rf = 30 kΩ and Cf = 5.2098 pF to satisfy

1
Rf Cf

= p2 = 2π × 1.0183e6. gm is selected to be 1 mA/V and Rb = 4.6075 kΩ based
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Figure 3.11: Feedforward compensated op amp

on Eq. (3.20). The three compensation methods SMC, SMRC, and Feedforward are

simulated in PSPICE. The simulated results are tabulated in Table 3.3.

Table 3.3: Compensation Method Performance Comparison

Comp. Method Ft(Hz) PM BW-ol BW-cl 1% ST

SMC 144 k 80.485◦ 22.19 175.4 k 4.3224 µs
SMRC 143.68 k 83.067◦ 22.19 164.35 k 4.5487 µs

FF 37 M 79.418◦ 106.67 k 34.9 M 154 ns

The simulation shows that the proposed active feedforward compensation

method is feasible to the existing popular op amp architecture. The performance

of feedforward is superior to those of the other two pole splitting methods. With

similar phase margins, the feedforward compensated op amp demonstrated larger

bandwidth and faster settling time.

One possible problem related to this method is that the transient response is

not as stable as the frequency response even though it has a reasonable measured

phase margin. The transient response is not very consistent for input signals with
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different frequencies, especially in the case of different rise and fall times. The problem

might result from the non monotonically decreasing phase curve shown in Fig. 3.12.

The phase goes down rapidly to −170◦ before it goes up to −90◦. In order for

the phase margin to be a true measure of stability, the worst phase margin should

not occur for gains higher than unity at all possible frequencies below the unit gain

frequency.
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Figure 3.12: Frequency response of the feedforward model

3.7 Modified Feedforward Compensation Model Including The Lead And
Lead-lag Circuits

To deal with the variable transient responses of the feedforward compensation

method for different input situations, the additional phase lead networks are included

to optimize this method in order to shape the phase curve and make the pattern of

the transient response more robust. Fig. 3.13 shows a system level model of modified

feedforward compensation strategy with lead and lead-lag circuits to improve the

corresponding transient response.

The frequency response of the differential input stage is modeled by the dc

gain A01 and the pole p1 = 1
R1C1

. Similarly, the frequency response of the inverting

stage is modeled by the dc gain A02 and the pole p2 = 1
R2C2

. The buffer stage is used
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Figure 3.13: Modified feedforward compensation system model

to isolate the output of the second stage from the load stage in order to be used for

the case of small resistance load or large capacitive load or both. The resulting open

loop transfer function is

A(s) =
A01A02

(1 + s/p1)(1 + s/p2)(1 + s/p3)
, (3.31)

where p3 = 1
RLCL

. The system level model realistically represents the bench mark

circuit but can be used to include or adjust any of the three dominant poles. As shown

in Fig. 3.13, the feedforward compensation path consists of a negative wideband

transconductance amplifier −gm, a feedback resistor Rb, a lead network consisting of

Rf1 and Cf1 with the transfer function s
s+ 1

Rf1
Cf1

, and a lead-lag network consisting of

Rf2, Cf2, and Rg2. The transfer characteristic of the lead-lag circuit here is

Hlead−lag(s) =
s + 1

Rg2Cf2

s + 1
(Rg2‖Rf2)Cf2

. (3.32)

By adjusting the poles of the lead and lead-lag circuits wp1 = 1
Rf1Cf1

, wp2 =

1
(Rg2‖Rf2)Cf2

, and the zero of the lead-lag circuit wz2 = 1
Rg2Cf2

, we can achieve bet-

ter open loop phase margin of the circuit than the model shown in Fig. 3.4 and

improve the closed loop transient response as well. The simulation results based on

the updated feedforward compensation prove that the proposed approach functions

successfully. The lead network is used to block the dc signal, give more phase lead,
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and maintain the closed loop midband gain at unity. The above lead-lag circuit has

wz2 < wp2 based on its architecture. The modified Feedforward simulation results are

tabulated in Table 3.4.

Table 3.4: Simulation Result Of Modified Feedforward Compensation with Lead-Lag

Comp. Method Ft(Hz) PM Open Loop BW Closed Loop BW 1% ST

FF 1.167 G 90◦ 106.92 k 1.557 M 933.6ns

Even though the settling time of the modified feedforward compensation with

lead-lag is not as fast as that of the original feedforward compensation method

recorded in Table 3.3, the phase curve of the modified feedforward is shaped to let the

worst phase margin occur around the unity gain frequency as shown in Fig. 3.14. As

a result, the transient response of the modified feedforward method is more consistent

with different input signals.
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Figure 3.14: Frequency response of the modified feedforward method
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3.8 Design of the gm with the Lead-lag Circuit

Intuitively, we think a well-designed lead-lag circuit might replace the indi-

vidual lead-lag circuit along with the −gm wideband transconductance circuit in Fig.

3.13. One proposed gm architecture including one pole and one zero is presented in

Fig. 3.15.

M1 M2

CL

M3 M4

W/L
NW/L NW/L

W/L

Figure 3.15: Creative gm design

3.9 Conclusion

In this chapter, the technique of a creative feedforward compensation method

of op amps is introduced and presented in detail. The proposed feedforward compen-

sation overcomes the serious drawback of bandwidth narrowing by the widely used

pole splitting method. It can improve the phase margin as well as optimize the band-

width of the op amp. The feedforward method can be easily applied to the existing

popular two gain stage op amp architectures with very little alteration. The math-

ematical derivation and circuit simulation demonstrate the advanced property and

improved performance of this feedforward compensation technique.
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A design methodology used for this innovative feedforward compensation scheme,

which combines intuition, mathematical analysis, and mixed level simulation is sug-

gested. The mixed level simulation is comprised of both the system level simulation

and the device level simulation for some critical analog circuit path. This mixed sim-

ulation can verify the behavior of design ideas in an effective way as well as providing

sufficient accuracy to predict the circuit performance realistically.
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Chapter 4

Low Voltage Low Power Op Amp Gain Boosting Techniques

4.1 Introduction

With the growing demand for low power mixed signal integrated circuits for

portable or nonportable high performance systems, analog circuit designers are chal-

lenged with making analog circuit blocks with lower power consumption with little

or no performance degradation. Op amps are widely used for control and instrumen-

tation applications where high accuracy is required. There has been a trend toward

lower voltage and lower current operation to meet the needs of battery operated

products and CMOS op amps are ideally suited for low power application. The clas-

sic Widlar op amp architecture, originally developed for bipolar junction transistors

(BJT), has required modification for use with CMOS devices. In particular, it has

proved difficult to match the open loop gain of bipolar op amps with CMOS technol-

ogy [3, 4]. This is due to the inherently lower transconductance of CMOS devices as

well as the gain reduction due to short channel effects that come into play for submi-

cron CMOS processes. As a result, gain boosting schemes have been reported [5,6] to

improve the gain. Multiple stage amplifiers with gain stages of more than three may

be used for higher gain analog circuit designs. Nevertheless, multistage amplifiers

generally are difficult to compensate.

One way to reduce the power consumption of op amp circuits is by scaling

down the power supply voltage. Resulting in a reduced input common mode range

and output swing. Since the threshold voltage of MOSFET does not scale down at

the same rate as the reduction of the minimum transistor length with the advance
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of technologies as shown in Fig. 4.1. VGS is the gate-to-source voltage and VT is the

nominal threshold voltage.

Figure 4.1: Power supply and threshold voltage versus the MOSFET channel length [1]

Reduced power supply voltage makes many existing gain boosting techniques

no longer suitable for standard CMOS processes. Moreover, static power dissipation

increases with the decreased threshold voltage. Scaling does not benefit analog circuits

as great as it does digital circuits since the minimum size transistors are not usually

selected in analog circuits because of noise and offset voltage constraints.

There are two classes of low voltage op amps in general. The first class operates

with 2-3 Volt power supplies while the second class works with power supplies below

1.5 Volt. Op amps in the range of 2-3 V power supply low voltage range can still use

56



some existing structures with minor changes while op amps used under 1.5 V power

supply low voltage range have to adapt some innovative designs to fit the extremely

low voltage.

One important design aspect is the operation region of transistors. Power

consumption is the highest when the MOSFET works in strong inversion while power

consumption is much lower if the MOSFET works in weak inversion or subthreshold

region due to the low quiescent drain current.

4.2 MOSFET Operation

MOSFETs in amplifier stages usually work in their active (saturation) regions.

There are basically three operation regions of an MOS transistor within the active

region; the strong inversion region, the moderate inversion region, and the weak

inversion region.

When an n-type MOSFET is biased with voltages, three different situations

may happen at the semiconductor surface. Assuming the source is tied to the p sub-

strate at the zero voltage ground level, a negative voltage VG applied to the gate will

bring excess positive carriers (holes) to the interface and give rise to an accumulation

of holes. This case is called the accumulation.

When a small positive voltage VG is applied to the gate, the majority carriers

(holes) near the semiconductor surface are repulsed and leave negative ions behind.

This is called the depletion case since there are no free carriers available to cause the

current flow.

As VG gets larger, the positive gate voltage starts to attract minority carriers

(electrons) in the p substrate to the gate surface area. The gate voltage required for

the electron concentration under the gate to be equal to the majority carrier (hole)

concentration in the p substrate is usually called the threshold voltage VT . With VG

gradually increasing, when the electron concentration at the surface is larger than the

intrinsic carrier concentration while the hole concentration is less than the intrinsic

carrier concentration, the minority carrier (electrons) becomes majority at the surface
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and the channel beneath the gate is inverted to n region. This is called the inversion

case. At first, the surface is in a state of weak inversion region due to the small electron

concentration. As gate voltage VG is increased, the moderate inversion region and

strong inversion region are reached.

The operation region of a MOS device as a function of Veff = VGS − VT is

shown in Fig. 4.2. VGS is the gate-to-source voltage and VT is the nominal threshold

voltage.

Figure 4.2: Operation regions of an MOS transistor [2]

4.2.1 Strong Inversion Region

The strong inversion region is the most frequently used among the three re-

gions. In the strong inversion region, the commonly used drain current ID with VGS

variation is represented by the square law equation

ID =
µCox

2

W

L
[VGS − VT ]2[1 + λ(VDS − Veff )], (4.1)
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In this expression, µ is the surface mobility of the channel, Cox is the capacitance

per unit area of the gate oxide, W is the effective channel width, L is the effective

channel length, λ is the channel length modulation factor, and VDS is the resulting

drain-to-source voltage.

The transconductance in the strong inversion region is [21]

gm =
∂iD
∂vGS

=
√

2µCox(W/L)ID. (4.2)

The incremental drain-to-source resistance is

rds =
1

λIDP

. (4.3)

where IDP is the drain pinchoff current and is often approximated by ID. The voltage

gain A0 of the single stage CMOS amplifier illustrated in Fig. 4.3 is given by

A0 = −gmrds. (4.4)

In the strong inversion region, the gain varies with ID as

A0 =
−K1√

ID

. (4.5)

This means that the gain is inversely proportional to the square root of the

drain current. Lower current actually produces higher gain for strong inversion de-

vices.

4.2.2 Moderate Inversion Region

As shown in Fig. 4.2, the MOS device starts to operate in the moderate

inversion region when Veff varies from a value of about 20 mV to approximately 220

mV [2]. In this region, drift and diffusion currents are similar. Increased gate-to-

source voltage results in the strong inversion region when drift current dominates the

diffusion current while decreased gate-to-source voltage leads to the weak inversion

59



VDD

Ibias

Vout

M1

VGG

Vin

Figure 4.3: Single stage amplifier

region when diffusion current starts to dominates the drift current. There is no

exact quantitative expression of the relationship between the current and VGS in the

moderate inversion region.

4.2.3 Weak Inversion Region

The lower end of the weak inversion region is the subthreshold region where

VGS is less than VT . As Veff ranges from subthreshold values up to about 20 mV,

the device is in the weak inversion region. Sometimes people use weak inversion and

subthreshold interchangeably. In the subthreshold region, the drain current decreases

but remains finite as VGS drops several tenths of a volt below VT . The drain current

decreases exponentially with VGS. Subthreshold operation of the MOSFET can be

used in low-voltage, low-power applications. The subthreshold state is dominated by

diffusion current instead of drift current as in the case of strong inversion. The drain

current as a function of the gate-to-source voltage is [6, 38]

ID =
W

L
ID0e

qVGS/nkT (1 − e−qVDS/kT ) (4.6)
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where n is the subthreshold slope factor, ID0 is a process-dependent parameter that

is dependent also on source-to-bulk voltage and threshold voltage, k is Boltzmann’s

constant, T is the absolute temperature, and q is electronic charge. The subthreshold

current is independent of the drain-to-source voltage once VDS is higher than a few

times the thermal voltage kT/q. The transconductance can be found from Eq. (4.6)

and Eq. (4.2) as

gm =
W

L
ID0

q

nkT
eqVGS/nkT (1 − e−qVDS/kT )

=
q

nkT
ID. (4.7)

It is clear that the transconductance is linear with the drain current in the weak

inversion region. The incremental drain-to-source resistance is related to the early

voltage VA by

rds =
VA

ID

. (4.8)

While VA is approximately constant through the weak inversion region for a given

channel length, the midband gain in the weak inversion region approaches a constant

value or

A0 = −gmrds = − q

nkT
VA. (4.9)

The relatively constant gain in the subthreshold region results in less signal distortion

than those in the moderate and strong inversion regions as reported in [2, 39]. The

weakly inverted MOSFET is very attractive for low power designs. The proposed

composite cascode connection which combines strong inversion with weak inversion

MOS devices will be introduced in the next chapter.

4.3 The Conventional Cascode Connection

To increase the gain of the CMOS stage, the transconductance of the stage

can be improved or the output resistance seen by the first or second stage can be
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enhanced. The output resistance increases in proportion to a decrease in bias current

as shown in Eq. (4.3) while the transconductance increases as the square root of the

increase in bias current as shown in Eq. (4.2). It is power efficient to increase the

output resistance by lowering the bias current. The cascode structure is a widely used

gain boosting scheme used in op amp design.

Fig. 4.4 shows a single stage amplifier using a conventional cascode connection

where the common-gate stage device M2, biased by a voltage supply VG2, is added to

the input common-source stage M1. VG1, VG2, and Ibias are chosen to make M1 and

M2 to operate in their active regions.

VDD

VG2

Ibias

Vout

M1

M2

VG1

Vin

Figure 4.4: Conventional cascode amplifier

Assuming the current source Ibias is ideal, the output resistance is

rout = rds1 + rds2 + (gm2 + gmb2)rds1rds2. (4.10)

The midband voltage gain for the circuit of Fig. 4.4 is

A0 = −[gm1rds1 + gm1rds1(gm2 + gmb2)rds2], (4.11)
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where gm1 and gm2 are the transconductance of M1 and M2 individually, rds1 and

rds2 denote the drain to source resistance of M1 and M2 at the bias point used,

and gmb2 represents the transconductance that models the body effect of M2. As

indicated by Eq. (4.11), it is clear that the cascode structure can achieve significantly

higher voltage gain than the single stage of Fig. 4.3 by providing a higher output

resistance. However, this configuration requires that the bias voltage VG2 for M2

be VT + 2Veff . The drain of M2 is set higher than VG2 in order to allow for some

variational sinusoidal voltage swing. Thus, the use of a cascode as shown in Fig. 4.4

will require a supply voltage high enough to support the bias requirements of M1 and

M2 as well as to provide headroom for the active load Ibias, which in practice may itself

be implemented as a cascode. The input common mode level is very restricted due to

structural constraints. The operation of this cascode connection has limitations for

low voltage, low power applications due to the bias voltage requirement and limited

output swing. To achieve an even higher gain, more cascode devices can be added in

the cascode stack connection to form a “triple cascode”. But this further reduces the

already small output swing and the input common mode range.

4.4 Other Cascode Techniques

In order to continue applying the benefits of the high output impedance of the

conventional cascode technique while alleviating the drawbacks like the very limited

input common mode range, small output swing, and relatively high power supply

requirements, modified cascode gain boosting techniques come into play.

4.4.1 Gain Boosted Cascode Amplifier

Fig. 4.5 shows a gain boosted cascode amplifier [17] or enhanced output

impedance cascode amplifier [4]. This form of gain boosting technique is used to

further increase the output impedance without using more cascode devices. The ba-

sic idea is to use a negative feedback amplifier to force the source of M2 (the drain

of M1) to be at the same voltage as the bias voltage VG2 at the input of the feedback

amplifier A1. As a result, the drain-to-source voltage of M1 is less affected by the
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voltage variation of Vout since the negative feedback amplifier A1 regulates the voltage

and maintain the drain-to-source voltage of M1 stable.

VDD

VG2

Ibias

Vout

M1

M2

VG1

Vin

A1

Figure 4.5: Gain boosted cascode amplifier

With small signal analysis, the output impedance is given by

rout = rds1 + rds2 + gm2rds2rds1(1 + A1). (4.12)

The form of the output impedance can be simplified as

rout ≈ A1gm2rds2rds1 (4.13)

if A1 is big enough. It is clear that the output resistance of this gain boosted cascode

amplifier is further enhanced by A1 compared to that of the conventional cascode

amplifier. The midband voltage gain becomes

A0 ≈ −A1gm1gm2rds2rds1. (4.14)
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The gain boosted cascode amplifier can greatly improve the midband gain but

further reduces the output swing. This structure is not suited for the second class

low power supply voltage under 1.5 V. Even for the first class of 2-3 low voltage

region, 3 Volt supply is a more appropriate choice due to the limited output swing.

Another drawback is when the gain boosted cascode structure is used in a fully dif-

ferential circuit design, it demands common mode feedback (CMFB) circuit since the

output common mode level of the high output impedance circuit is very sensitive

to device characteristics, mismatches, and temperature variation. Besides the draw-

backs including a large number of external bias voltages and the sensitivity of the

bias to process variation that the conventional cascode already has, the requirement

of CMFB adds additional design complexity, higher power consumption, and extra

chip area.

4.4.2 Folded Cascode Connection

To overcome the limited input common mode voltage and possibly improve

the output swing of the conventional telescopic cascode connection, a structure called

the “folded cascode” [4, 6, 17] can be used. Fig. 4.6 shows a simple folded cascode

connected circuit.

VDD

M2

M1

VG1

Vin

Vout

VG2

I1

I2

Figure 4.6: Simple folded cascode circuit
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As illustrated in Fig. 4.6, the input device is supplanted with a P type MOS-

FET M1 to fold up the small signal current to the common gate NMOS device M2

and the output load. The main advantage of the folded structure is the freedom of

choosing the bias voltage levels since it folds the two opposite type devices instead of

putting one device on the top of another component.

The structure of a folded cascode op amp which employs the folded topology

is shown in Fig. 4.7. This folded structure is used to improve the input common

mode range. The folded cascode op amp has a push pull output stage which can sink

or source current from the load. The exact match of the currents in the differential

amplifier is not demanded by the folded cascode op amp since extra current can flow

in or out of the current mirrors.

M2M1

Vb

Vin

Vout

I1 I2

VDD

ISS

IS1 IS2

M4M3

Figure 4.7: Folded cascode op amp structure

While the bias current of the conventional cascode delivers the current to both

the input devices and the cascode devices since they are stacked together, the bias

current ISS of the folded cascode supplies only the input devices. Additional bias
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currents such as I1 and I2 as shown in Fig. 4.7 are required to add the necessary bias

current. In general, the folded cascode connection dissipates more power.

The gain of a folded cascode op amp is normally lower than that of a cor-

responding conventional cascode op amp due to the lower impedance of the devices

in parallel. A folded cascode op amp has a pole at the folding connection which is

lower compared to that node pole of the conventional cascode op amp. This is due

to the larger parasitic capacitance of extra and possibly wider devices in the folded

structure. Sometimes this low folding pole can self-compensate a folded cascode if

the phase margin is good enough.

Calculations in [17] indicates that the output voltage swing of a folded cascode

op amp is only insignificantly higher than that of a conventional cascode topology.

The popularity of a folded cascode mostly comes from the flexible input common mode

level and the availability of shorting the input and output together even though it

consumes higher power and requires more complicated design.

4.5 Other Low Supply Voltage Techniques

As mentioned, one common way to reduce the power consumption of analog

circuits is by reducing the power supply voltage. However, the circuit performance

degrades at low voltages. It raises the challenge of modifying circuit structures for

low voltage application since low voltage analog circuit design techniques are quite

different from high voltage analog circuit design. The alteration or even redesign of

the current circuit structure is necessary for low voltage operation.

Low voltage design is required for conditions when current levels are very

small and supply voltages are low. Applications can be found but not limited to the

biomedical area. The main restrictions of low voltage circuit design are the transistor

threshold voltage and the device noise level. The down scaling of threshold voltage

relies on specific device technology advancement. Higher threshold voltage has better

noise margin and is less sensitive to noise while the lower threshold voltage decreases

the noise margin and become more noise sensitive [40]. As a result, threshold voltage
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can not be decreased below the noise floor level even with the availability of the

fabrication technology to do so. A few low voltage design techniques for low power

supply op amps are presented here.

4.5.1 Composite Cascode

If the conventional cascode structure is changed to bias the upper MOS device

M2 in a way that has less effect on the output voltage swing, the output impedance of

the connection may be increased with sufficient output swing at low supply voltage.

One practice is to make both of the gates of M1 and M2 driven by the input signal

and share a single bias source. This connection provides high output impedance due

to source degeneration to give high output gains. This composite cascode approach,

which combines the regular active devices with weak inversion devices, is promising in

low voltage low power op amp design as will be introduced in detail and demonstrated

in the next chapter.

4.5.2 Bulk-Driven Devices

A four terminal MOSFET transistor is usually treated as a three terminal

device by tying the bulk terminal to ground or power supply Vdd. However, the

bulk terminal can be used as the small signal input in amplifier circuits which are

appropriate for the low voltage design environment. Fig. 4.8 shows a bulk-driven

input stage of an op amp.

The ultimate limit of analog circuits in CMOS technology at low supply voltage

comes from the threshold voltage. The turn on threshold voltage greatly inhibits the

signal swing for the gate-driven MOSFETS. Instead, the bulk-driven device does not

have this constraint on the threshold voltage.

The biasing current through its drain is necessary for a MOSFET to function.

This drain current in a conventional gate-driven MOSFET is regulated by the gate-to-

source voltage VGS when the applied gate voltage surmounts the threshold voltage.

In this case, bulk-source voltage VBS has only a slight effect on the drain current
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Figure 4.8: bulk-driven amplifier

which is called body effect. With the body effect or the backgate effect, the threshold

voltage becomes

VT = VT0 + γ(
√

|2φF + VSB| −
√

|2φF |), (4.15)

where VT0 is the original threshold voltage without body effect, γ is the body effect

coefficient with a value in the range of 0.3 to 0.4, φF is the equilibrium electrostatic

potential (Fermi potential) in the semiconductor, and VSB is the source bulk voltage.

When VSB < 0 or VBS > 0, VT is reduced and bulk source diode might be forward

biased. Not only can VT be adjusted by VBS through the bulk node, the actual ac

input signal can be driven through the bulk too.

In a bulk-driven MOSFET, we set VGS at a bias voltage to turn on the MOS-

FET to have a continuous drain current and the input signal is applied at the bulk

terminal. The bulk-driven MOSFET functions like a JFET. Because of the applied

gate voltage, a channel exists between the source and drain of the MOSFET. The

channel width is constant as long as gate bias does not change. The bulk terminal

functions like the gate of a virtual JFET and modulates the channel width with the
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applied voltage. The bulk-driven MOSFET has the depletion characteristics and it

can work with negative, zero or slightly positive bias voltages. As a result, the con-

straint of VT is totally removed in this case and these devices can work with power

supply voltages under 1 V.

The bulk-driven transistor has a transconductance gmb as shown below:

gmb =
∂iD
∂vBS

=
γgm

2
√

2φF − VBS

. (4.16)

The transconductance of a bulk-driven MOSFET is lower than that of a conventional

gate-driven MOSFET, which may correspondingly decrease the gain and the band-

width of a bulk-driven device. The small signal gain of a bulk-driven amplifier can

exceed that of a standard gate-driven common source stage only when

VBS ≥ 2φF − 0.25γ2 ≈ 0.5V, (4.17)

where the transconductance gmb of the bulk-driven device is larger than the standard

gate-driven transconductance gm. But it comes at the price of power dissipation due

to the considerable current flowing in the bulk-source junction.

In [41], a 1-V op amp was designed using the bulk-driven technology to satisfy

the low supply voltage condition and with rail-to-rail input and output range. This 1

V op amp has about 49 dB gain and a 1.3 MHz unity gain frequency. A phase margin

of 57◦ is achieved while driving a 22 pF load capacitance.

The drawbacks of bulk-driven devices accompany their advantages. The polar-

ity of the bulk-driven MOSFETs is related to process technology. There are only N-

channel bulk-driven MOSFETs available for the P-well process while only P-channel

MOSFETs are available for the N-well process. As a result, bulk-driven MOSFETs

cannot be used in standard CMOS structures where both N and P channel MOS-

FETs are indispensable. Bulk-driven MOSFETs require separate wells in fabrication

so as to have isolated bulk terminals. Thus, bulk-driven MOSFETs not only need

more expensive processes and bigger chip area, but the matching between bulk-driven
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MOSFETs in differential wells is worse than that of the conventional gate-driven de-

vices in CMOS processes. Analog circuits which demand good matching between

MOSFETs are not easy to obtain through bulk-driven devices.

4.5.3 Floating Gate MOS

A possible approach for low voltage design for the analog circuit is the floating

gate technique. Floating gate MOS transistors are widely used as the storage elements

in EPROM and EEPROM circuits. Floating gate MOSFETs are useful because they

can store an electrical charge for extended periods of time even when the power is

off. The schematic of a multiple input floating gate MOSFET is shown in Fig. 4.9.

VG1

VG2

VGn

Figure 4.9: Floating gate transistor

Floating gate MOSFETs are not as widely utilized in analog circuits as in

digital circuits. Floating gate devices are available in standard CMOS technology with

double polysilicon due to their long existing popularity in digital circuits. Floating

gate MOSFETs have the potential for low voltage analog design since the tuning of

the threshold voltage is available. The gate of a floating gate MOSFET is generally

floating with an electrical charge. This charge can stay constant for quite a long

time due to the good insulation from the floating gate to other nodes. The floating

gate is similar to the gate of a normal MOSFET but the voltage of the floating gate
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is controlled by the control gates though capacitance coupling. The input common

mode level can be set at an arbitrary voltage since the transistor is ac coupled through

capacitance. A multi-input floating gate (MIFG) MOSFET, such as the one shown

in Fig. 4.9, may be used for analog circuit design. The drain current versus gate-to-

source voltage of the floating gate device is similar to that of a regular transistor.

A two input floating gate MOSFET is shown in Fig. 4.10.

VG1

VG2

CG1

CG2

D

S

Ctot

Figure 4.10: Two input floating gate transistor

The first polysilicon layer makes the floating gate over the channel while the

multiple input gates are on the second polysilicon layer. For this two input gate

MOSFET, a bias dc voltage VG2 is applied at the lower gate and the signal is applied

at the upper gate. The threshold voltage with regard to the signal gate for the

MOSFET is related to the threshold voltage of the floating gate VT (FG) as

VT =
VT (FG) − VG2k1

k2

, (4.18)

where k1 = CG1/Ctot and k2 = CG2/Ctot. CG1 and CG2 are the capacitances between

the control gates and the floating gates. Ctot is the sum of the capacitances be-

tween floating gate and the control gates, the capacitance between floating gate and

72



drain, the capacitance between floating gate and source, and the capacitance between

floating gate and bulk [40].

VT can be programmed to be less than VT (FG) with the appropriate selection

of VG2, k1 and k2. Thus, the MOSFET can have a modified VT that is lower than the

normal VT (FG). The equivalent transconductance of the combined structure gm(eff) is

related to the transconductance seen from the floating gate gm(FG) as

gm(eff) = k2gm(FG). (4.19)

gm(eff) of the two input floating gate device is less than gm(FG) by a factor of k2.

The output impedance is less than that of a conventional MOSFET under the same

bias condition due to the dc and ac feedback from drain to floating gate. This device

is not suitable for high gain stage design. In general, the fabrication of the floating

gates device costs more than regular CMOS.

Floating gate MOSFETs can be used to build op amp structures, which can

operate at low voltage supplies. [42] presented a fully differential class AB/BA op amp

with a 1.8 V power supply having a nominal gain of 5, rail-to-rail input and output

swing, 1.6 MHz bandwidth, and 16 V/µs slew rate while driving a 70 pF capacitive

load. Research of floating gate MOSFETS used in op amp design with ultra low

supply voltage below 1 V is underway by a few groups.

4.6 Conclusion

MOSFET operation is introduced and three different inversion levels are pre-

sented with the suggestion of applying weak inversion operation to low power design.

A few popular cascode gain boosting techniques for op amp designs are presented with

their merits and demerits. Some possible design techniques for a very low voltage en-

vironment are introduced and discussed. The choice of an appropriate technique or

a combination of a few techniques can be employed for the corresponding low power

high gain op amp design.
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Chapter 5

Design of High Gain Op Amp Using Composite Cascode Con-
nections

5.1 Introduction

Many gain boosting schemes have been reported [5,6] to improve the gain of an

op amp. These gain enhancing methods often require complicated circuit structures

and high supply voltage, and may produce a limited output voltage swing. Multiple

stage amplifiers may be used for higher gain analog circuit designs. Many compen-

sation schemes for multistage amplifiers have been investigated and reported [3–5,7].

However, most compensation methods require more circuit area and more complex

design than the dominant pole approach used in the classic op amp architecture.

Other high-gain CMOS op amps have been investigated in previous work [8–

14], but most did not achieve gains higher than 100 dB. A few achieved a gain ranging

from 120 dB to 130 dB. These CMOS op amp designs use up to five cascaded gain

stages to achieve the high gain. The highest reported was the simulated 140 dB [10]

unbuffered op amp with three cascaded gain stages. In general, high gain architectures

need complex compensation to stabilize the op amp and generally require more than

one compensation capacitor.

In papers [21, 40, 43], various aspects and applications using the composite

cascode connection which consists of the series association of two MOS transistors

have been reported. However, most variations are focused on one of the devices

working in the active (saturation) region and the other device operating in the triode

region. In 2004, Comer et al. [44] discussed the effects on the overall composite

cascode circuit performance with one device operating in the subthreshold and the
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other device operating in the active region and suggested that this approach may

result in a very high gain stage for use in op amps.

This chapter discusses the design of a high gain, low power, general purpose op

amp with the structural simplicity of the classical Widlar architecture. The proposed

op amp structure applies composite cascode connections in both the input stage and

the second stage to achieve a gain of around 120 dB with low power consumption.

The op amp employs the traditional two gain stages followed by a near unity gain

buffer stage. With only two gain stages, simple Miller compensation with a capacitor

as small as 3.5 pF can be used. This approach overcomes some limitations of conven-

tional CMOS cascodes by enhancing the gain without using additional bias circuits

and requires only a small bias headroom voltage. A larger output voltage swing is

then available using composite cascode amplifier stages than with conventional cas-

codes. As discussed in the former chapter, low power op amp can be designed by

operating the MOS transistors in the subthreshold or weak inversion region. While

the composite cascode provides high output impedance at a low bias current while

setting some devices in the subthreshold region along with the other active region

transistors, low power dissipation and high gain can be achieved at the same time.

5.2 The Composite Cascode Connection

In order to reduce the bias headroom voltage required for a conventional cas-

code, Comer et al. [21,43,44] proposed the composite cascode connection. The struc-

ture of the composite cascode connection is shown in Fig. 5.1. Both of the gates of

M1 and M2 are driven by the input signal and share a single bias source VGG.

If M2 and M1 have similar W
L

aspect ratios, M1 will operate in the triode

region while M2 will operate in the active region. In this case the composite cascode

works like a common-source stage, but with higher voltage gain. If M2 is chosen

with a much higher aspect ratio than M1, with appropriate bias of VGG and Ibias, M1

is placed in the strong inversion region while M2 is operating in the weak inversion

region. The gain in this case can be further increased. Although the bandwidth is
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VDD

Ibias

Vout

M1

M2

VGG

Vin

Figure 5.1: Composite cascode amplifier

lower than that of the conventional cascode due to the larger capacitance of the weak

inversion device M2, this capacitance may be advantageous in the dominant pole

compensation of the conventional op amp.

Assuming the current source has infinite output impedance, the output resis-

tance is

rout = rds1 + rds2 + (gm2 + gmb2)rds1rds2. (5.1)

It is obvious that Eq. (5.1) has the same expression as the output resistance in Eq.

(4.10) of the conventional cascode. The voltage gain for the circuit of Fig. 5.1 is

A0 = −[gm1rds1 + gm2rds2 + gm1rds1(gm2 + gmb2)rds2]. (5.2)

If the current source load has a finite resistance R instead of the assumed infinite

output impedance, the voltage gain then becomes

A0 = − [gm1rds1 + gm2rds2 + gm1rds1(gm2 + gmb2)rds2]

1 + 1
R
[rds1 + rds2 + (gm2 + gmb2)rds1rds2]

. (5.3)
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Eq. (5.2) shows the composite cascode structure can achieve high gains similar

to that of the conventional cascode stage in Fig. 4.4.

5.3 Practical Composite Cascode Circuit

Fig. 5.2 shows a practical composite cascode amplifier stage in which the ideal

current source load has been replaced by PMOS devices M3 and M4.

VDD

Vout

Vbias

M1

M2

M4

M3

VGG

Vin

Figure 5.2: Practical composite cascode stage

Here M4 is chosen to have a larger W
L

aspect ratio than M3 similar to the ratio

of M2 compared to M1. M4 is operated in the subthreshold region while M3 is in

the active region. The output impedance looking into the drain of M4 is given by

Eq. (5.1). If the impedance looking into the drain of M4 is equal to the impedance

looking into the drain of M2, R = [rds1 + rds2 +(gm2 + gmb2)rds1rds2], according to Eq.

(5.3), the voltage gain of the composite cascode stage is then

A0 = −1

2
[gm1rds1 + gm2rds2 + gm1rds1(gm2 + gmb2)rds2]. (5.4)
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This can also be written as

A0 = − [gm1rds1 + gm2rds2 + gm1rds1(gm2 + gmb2)rds2]

1 + rds1+rds2+(gm2+gmb2)rds1rds2

rds3+rds4+(gm4+gmb4)rds3rds4

. (5.5)

If M3/M4 are biased in the triode region, the gain would be lower but still greatly

above that of the single stage amplifier.

5.4 Circuit Realization

The general purpose BJT op amp has traditionally been designed to have the

classical Widlar architecture which consists of a high gain differential input stage, a

moderately high gain second stage, and a low gain stage that acts as a buffer. The

first two stages are used to provide overall voltage gain high enough for the op amps.

MOS op amps are ideally suited for low power application. The classic Widlar op

amp architecture, originally developed and widely used for bipolar devices, has been

mimicked in CMOS devices. But it requires modification for use with CMOS devices.

This is due to the inherently lower transconductance of CMOS devices as well as

the gain reduction due to short channel effects that come into play for submicron

CMOS processes. It has proved difficult to match the open loop gain of bipolar op

amps with CMOS technology [3, 4]. The benefit of higher cutoff frequency due to

smaller channel length is not needed for the first stage in pole splitting compensation

methods. Relatively longer channel length devices can be used there. The use of

longer channel devices also leads to higher voltage gains because of reduced channel-

length modulation effects and higher output resistance. Additionally, longer lengths

result in larger widths to achieve appropriate levels of channel inversion [2]. The

larger gate areas of the input devices will also reduce the threshold voltage and

transconductance mismatch.
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5.4.1 Input Differential Composite Cascode Stage

As shown in Fig. 5.3, the first stage is the differential-to-single ended practical

composite cascode stage with current mirror load.

V+V-

M1

M3 M4

M8M7

M6M5

M2

5/1

120/1

50/1

2/2

VSS = −1V

Ibias

Vout1

VDD = 1V

Figure 5.3: Op amp input differential composite cascode stage

The composite cascode connection in both N-channel and P-channel allows

the input to swing from the positive power supply to the negative power supply. P-

channel input devices provide for good power supply rejection. Moreover, the gain in

the weak inversion region is relatively independent of drain current. In the composite

cascode configuration, the output transistor is selected to have a much higher W
L

aspect ratio than that of the lower transistor. This allows a simple adjustment of

the tail current to place the drain connected device M2 in the weak inversion region

while the source connected device M1 operates in the strong inversion region. The

transistors are scaled with a channel length of 1 µm, while allows better matching
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than minimum length. The frequency response for the input stage is shown in Fig.

5.4. The midband gain for the chosen scaling is around 64 dB.
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Figure 5.4: Op amp input stage frequency response

5.4.2 Composite Cascode Current Mirror

The current mirror used to provide the bias current to the input stage and the

bias voltage to the second stage is shown in Fig. 5.5.

The bias current for the input differential stage is only 3.65 µA. This P type

current mirror is also connected in the composite cascode structure in order to pro-

vide the robust bias current and voltage which can self adjust by tracking of the

corresponding variation of the other composite cascode stages.

5.4.3 Second Composite Cascode Stage

The second stage is a common source stage implemented as a composite cas-

code shown in Fig. 5.6.

Different choices of the second stage architecture design may be applied to

adapt to various situations as will be explained in a later section. The frequency
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VDD = 1V

Ibias3.65uA

VSS = −1V

Iout

Figure 5.5: Op amp composite cascode current mirror

VDD = 1V

Vout2

M12

M11

M10

M9
4/1

96/1

2/2

43/1

VSS = −1V

Vout1

Vb

Figure 5.6: Op amp second composite cascode stage

response for the second stage is shown in Fig. 5.7. The midband gain is around 58

dB. The compensation capacitor used for pole splitting (simple miller compensation)
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Figure 5.7: Op amp second stage frequency response

method is usually inserted between the input and output of this common source stage

to apply the Miller feedback effect.

5.4.4 Output Source Follower With A Current-sink Load

The output stage is used as a buffer to drive an external load. A source follower

with a current-sink load [4, 6] is used as shown in Fig. 5.8. This output buffer stage

has low output impedance which allows loading by a large capacitive load or small

resistive load.

The frequency response for the source follower stage is shown in Fig. 5.9.

It is clear that its transfer function includes some “zeros” that improve the phase

response. According to the analysis in [4], this type of source follower structure has a

left half plane zero due to the parasitic capacitance Cgs which could generate phase

lead and help achieve a more favorable phase margin. The disadvantage is that the

output swing is lowered by a few tenths of a volt. Different output stages can be

easily employed according to the corresponding circumstances. A rail-to-rail class
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Figure 5.8: Op amp output source follower stage
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Figure 5.9: Op amp output stage frequency response

AB output stage will be introduced in a later section of this chapter. The output

stage will not affect the main design topology of this composite cascode op amp.

5.4.5 Composite Cascode Op Amp in Widlar Architecture

Fig. 5.10 shows the overall schematic of a CMOS operational amplifier using

composite cascode stages which implements the classical Widlar op amp structure,
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with two gain stages followed by a buffer output stage as presented earlier. The entire

op amp design does not use any extra bias voltage or current supplies. The only bias

circuit is built inside the op amp chip to allow self adjustment.

VDD = 1V

V+V-

Ibias

Vout
M1

M3 M4

M8M7

M6M5

M12

M11

M10

M9

M14

M13

M2

5/1

120/1

50/1

2/2

4/1

96/1

2/2

43/1
28/1

99/1

3.65uA

VSS = −1V

Cc

Figure 5.10: Composite cascode op amp

The DC voltage transfer curve of the composite cascode op amp is shown in

Fig. 5.11, from which the common mode input range is seen to vary from -1 V to

0.7 V. The linear range is obviously the range of interest in an op amp. It denotes

the voltage range over which the two inputs can be driven together even though only

one input terminal of the op amp is actually connected with the input signal without

causing common mode distortion.
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Figure 5.11: Composite cascode op amp DC transfer characteristic

5.4.6 Total Harmonic Distortion

Besides the low power dissipation and ease of compensation, this composite

cascode op amp also has the advantage of reduced signal distortion over operation in

the strong inversion region.

The total harmonic distortion (THD) is the ratio of the sum of the powers

of all harmonic frequencies above the fundamental frequency to the power of the

fundamental frequency as represented in Eq. (2.18). Fig. 5.12 shows the output

waveforms for different input values.

5.5 Simple Miller Compensation (Pole Splitting)

Op amps require compensation to ensure closed loop stability. Compensation

for CMOS op amps is more difficult when there is significant phase shift due to the

large capacitive load. Early in 1967, Widlar designed the LM101/741 [18,20] op amp

which employed the “pole splitting” frequency compensation method [4, 20, 21, 45].

As the transistor gain of the second stage increases, the dominant pole frequency

decreases and the nondominant pole location increases. In this way the two poles

are being split apart and stabilize the feedback amplifiers by greatly narrowing the

bandwidth. Miller compensation is popular for op amp design because of its simplicity
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Figure 5.12: Op amp waveforms

and good stability. Though the slew rate of the amplifier is relatively decreased by

the low bias current of the gain stages of the composite cascode op amp, the effect

is counterbalanced by the smaller compensation capacitor. The open loop frequency

response of the op amp compensated with a 3.5 pF Miller capacitor is shown in Fig.

5.13. In this case, the output load consists of a 100 pF capacitor in parallel with a

25 kΩ resistor.

5.6 Simulation and Experimental Results

The Berkeley Short-channel IGFET Model (BSIM) has been shown to be an

accurate MOS transistor model in integrated circuit design. The semi-empirical model

has been found to perform well for both digital and analog circuit simulations includ-

ing small geometry effects. As early as 1987, Sheu et al. [46] reported good agreement

between measured and model simulated results for transistors operated in both strong

inversion and weak inversion regions with effective channel lengths as small as 1 µm.

Research for short channel devices in the deep subthreshold region [47] showed the

accuracy of short channel MOSFETs operating at currents as small as 100 pA via

the BSIM model. Now, the more advanced BSIM3 model is included in CADENCE

Spectre Spice Simulation which makes it applicable to modern submicron processes.
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Figure 5.13: SMC compensated op amp open loop response

The proposed compact high-gain op amp is laid out in the TSMC 0.25 µm process

and fabricated. CADENCE Spectre post layout simulation results along with the chip

test results for this work are tabulated in Table 5.1. The slew rate and 1% settling

time have been measured when the op amp is in the unity-gain feedback configuration

with a 0.5 V step input. More than half of the power consumption is due to the out-

put source follower. The input stage and second stage dissipated little power because

of the low current weak inversion operating region. Using simple Miller capacitor

compensation, Cc is required to be only 3.5 pF.

The micrograph of the opamp is shown in Fig. 5.14. The area of the amplifier

is about 0.05 mm2 and it could be reduced more if necessary. The simulated gain of

this opamp is 120 dB. The experimental test of the open loop gain is about 117 dB.

The detailed test method of the open loop gain will be presented in the next chapter.

The open loop gain of a real op amp is always finite though the gain of an

ideal op amp is infinite. While open loop gain is one of the most important param-

eters of op amps, the other characteristics including the input offset voltage, gain
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Composite Cascode Opamp

Figure 5.14: Fabricated composite cascode op amp

bandwidth product (GBW), common mode rejection ratio (CMRR), power supply

rejection ratio (PSRR), slew rate (SR), settling time (ST), phase margin (PM), and

power consumption [6, 21] are all key items to represent the performance of real op

amps in frequency domain and time domain. The input offset voltage is defined as

the voltage required at the inputs to set the output of the op amp to zero. The low

frequency op amp gain drops off at higher frequencies. As the product of the gain

and bandwidth is approximately a constant, the gain of a typical op amp can trade

off with the bandwidth. An op amp is usually characterized by its gain bandwidth

product, which is close to the unity gain frequency. CMRR is the ratio of common

mode input voltage swing to the change in input offset voltage. It is also designated

as the ratio of the magnitude of the midband open loop gain to the common mode

gain. PSRR is defined as the ratio of the change in power supply voltage to the

change of the input offset voltage of the op amp. The slew rate is the maximum rate

at which the op amp output voltage can change with an input step. The slew rate

is generally determined by the rate at which the critical node inside the op amp can

change voltage. Usually it is related to the current available to charge or discharge

a capacitance. Settling time is defined in Chapter 3 while phase margin is defined
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in Chapter 2. Power consumption is the overall power level that the op amp circuit

dissipates. Low power op amp design requires micropower consumption.

For simple Miller capacitor compensation, a 3.5 pF Cc is used to produce an

acceptable phase margin. The offset voltages on a sample of ten chips was found to

be between 0.3 mV and 3 mV. The CMRR and PSRR are above 100 dB. The test

results are quite close to the simulation results as shown in Table 5.1.

Table 5.1: Opamp Simulation Results and Test Results

Simulation Test

Loading 100 pF ‖ 25 kΩ
DC Gain (dB) 120 ≥ 117
GBW (MHz) 1.42 1.2

PM (◦) 43 43
SR+/SR− (V/µs) 0.26/0.78 0.27/0.43

Ts+/Ts−(µs)(to 1%) 3.99/1.36 3.85/2.2
Power(µW) 110 ≤ 120

Supply Voltage(V) ±1
Capacitor (pF) 3.5

The fabricated op amp test results show that the BSIM3 model in CADENCE

Spectre Spice Simulation matches closely to the experimental results in spite of the

low current weak inversion operation of the composite cascode output device. The

experiment thus provides confidence in the simulation for other similar designs. A

detailed chip test procedure and test methods will be presented in the following

chapter.

5.7 Layout Design

This prototype design of the composite cascode op amp is implemented in the

TSMC 0.25 µm process through a MOSIS research run. In analog design, matching

is very important. Particularly, op amps demand very good matching for good per-

formance with small offset and high noise rejection. The matching of analog circuits
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is dependent on the size, shape, and orientation of MOS transistors [48]. In gen-

eral, large transistors have more accurate matching than small transistors since the

increased gate area alleviates the impact of localized variation; long channel transis-

tors have better matching than short channel elements since longer channels decrease

linewidth variation and channel length modulation. Transistors arranged in the same

orientation have more precise matching than those arranged in different directions.

As a result, most wider transistors in this op amp are scaled with a channel length

of 1 µm. Some narrower transistors are scaled with a channel length of 2 µm to

increase the active gate area for optimum matching. Symmetrical layout is necessary

for analog circuits and all the stages in this op amp are laid out symmetrically and

compactly. The output source follower stage with the largest power consumption is

placed in a position to have even heat disperse to the input differential stage to avoid

unbalanced effects. Power and ground buses are comprised of several metal layers and

a wide cross section of buses is chosen to lower the resistance and keep the voltage

consistent. Dummy segments are put on the ends of the resistor terminals in the bias

circuit for accuracy to provide exact bias current.

Due to the issues of expense and time, my op amp design shared a test chip with

another mixed signal A/D circuit. To avoid noise coupling from the digital circuitry

to the delicate analog circuitry, guard rings are used to separate the sensitive analog

circuits from the substrate noise coupling from the digital circuits.

5.8 Different Configurations of Various Composite Cascode Op Amp

The device sizes of the second stage could be easily adjusted to change the

quiescent output voltage of the second stage for a different buffer design or to increase

or decrease the gain. The total gain could be easily increased above 140 dB by adjust-

ing the second stage device size. However, it would further lower the bandwidth and

increase the settling time. The regular common source stage can also be used for rel-

atively low gain but higher bandwidth performance. Fig. 5.15 shows the operational

amplifier which implements the classical Widlar operational amplifier structure, with

composite cascode differential input stage, and regular common source second stage
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followed by a source follower stage. By pushing the pole of the second stage further

away from the original point by using a regular common source connection instead

of the gain boosting composite cascode connection, the separation of the dominant

pole of the input stage from this first nondominant pole will be more desirable for

compensation purpose.

VDD

V+V-

Ibias

Vout

Vbias

M1

M3 M4

M8M7

M6M5

M11

M10

M9

M12

M2

Cc

Figure 5.15: Op amp with input differential composite cascode stage and regular
common source second stage

For this compact general purpose op amp, a higher or rail-to-rail output swing

could be achieved by the class AB connected output buffer stage as shown in Fig.

5.16 rather than the current sink source follower stage. If the gate of M13 and the

gate of M14 are directly connected to the output of the second stage, the output

is a simple push pull amplifier. If voltage sources VGP and VGN are added between

the gates and the output terminal of the second stage, higher power efficiency may

be obtained by controlling the corresponding gate-to-source voltages of devices M13
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and M14. The practical implementation of the voltages sources VGP and VGN can be

realized with level shift circuits. Generally the class AB output stage requires wider

devices and larger quiescent current for rail-to-rail swings, increasing the chip area.

VDD = 1V

V+V-

Ibias

Vout
M1

M3 M4

M8M7

M6M5

M12

M11

M10

M9

M14

M13

M2

3.65uA

VSS = −1V

Cc

VGP

VGN

Figure 5.16: Op amp with two composite cascode gain stages and a class AB output
stage

5.9 Conclusion

This work reports a low power, high gain op amp design in a 0.25 µm CMOS

process using the composite cascode connection. The design follows the classic Widlar

architecture. The proposed op amp produces an open loop gain above one million and

shows a favorable slew rate and GBW product compared to other amplifiers driving

large capacitive loads [22]. The design is fabricated as a MOSIS project chip and

tested. The chip test result shows a gain of about 117 dB. In addition, the composite

cascode amplifier requires a compensation capacitor of only 3.5 pF which allows a very

small op amp cell. This design is intended for applications where simplicity of layout,

small cell size, and low power are important. The open loop gain of this design is
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comparable to bipolar op amps and exceeds all known reported CMOS designs using

the classic Widlar architecture. The power supply voltage can be further reduced

from 2 volt to 1.5 volt due to the freedom in biasing the subthreshold devices.
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Chapter 6

Op Amp Test Procedure and Methods

6.1 Introduction

After an op amp has been designed and fabricated, the functionality test of

the op amp is required to describe its performance. How to characterize op amps

in frequency and time domain is a well studied topic. Simulation and experimental

results to measure the open loop gain of the op amp can be found in [49–56]. The

experimental measurements of the common mode rejection ratio and the power supply

rejection ratio are proposed in [50,54,55]. But it becomes more difficult to measure the

op amp characteristics, especially the open loop gain, as the power supplies decrease

for lower voltage processes. When the multiplication of input referred noise and the

open loop gain of the op amp [6,15] exceeds the voltage level of the power supplies, it

is difficult to directly measure the open loop gain of the op amp. In addition, if the

signal magnitude is even smaller than the noise magnitude at the input, the output

waveform would have little meaning.

The two pole model widely used in the test analysis to assess the parameters

of an op amp is not accurate and may be unsuitable for gain boosting op amp designs.

A more complex model with more than two poles may require tedious analysis and a

large amount of calculation. Most reported op amp measurement methods require a

complicated test circuit, delicate calibration, and sophisticated test instrumentation.

The practical bench test of the open loop gain along with other op amp characteristics

are addressed in this chapter.

The measurement of a real chip is more difficult than performing a computer

simulation of the circuit. The environment in the real world is always full of noise
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and interference. Special attention is needed to make sure that the test results are

valid. The set up of the chip test and the debugging of the problems encountered

during the test are now presented.

6.2 Power Supply Current Test and Debugging

A “functionality” test may be defined as applying an input signal to the device

under test and observing the expected output. In general, the measurable parameters

of the experimental design are simulated using different versions of SPICE simulators.

A table of expected results could be tabulated. For example, power supply current,

gain, and bandwidth for different closed loop feedback resistor ratios can be simulated,

measured and compared to test results. The validity of the chip performance can then

be evaluated by comparing the experimental results with the simulation results.

A specific procedure needs to be done to make sure the op amp circuit is not

affected by the digital circuit on the same chip since the pure analog op amp circuit is

fabricated with the A/D mixed signal circuit of another researcher on one chip. Due

to the lack of pins, some of the pins are even shared between the different circuits.

To make sure the test results are authentic, the A/D circuit sharing the same chip

with the op amp circuit has to be turned off. One way to check whether the digital

circuit has been shut down is to measure the current through the power supply and

compare the current to the value given by simulation. If the two elements are close

to each other, the credibility of the test board is increased.

The interconnection of the circuits is necessary for understanding the possible

paths of the interference coming from the A/D circuit. Fig. 6.1 shows the placement

between the op amp circuit and the A/D mixed signal circuit.

In Fig. 6.1, gnda denotes the analog ground while gndd represents the digital

ground. Vcc is the analog power supply and Vdd represents the digital power supply.

It is clear that the positions where the op amp circuit connects with the A/D circuit

are the analog power supply Vcc and the analog ground gnda. Because analog ground
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gnda Vcc Vdd gndd

A/D Mixed 

Signal Circuit

Op Amp

Circuit

Substrate

Figure 6.1: The interconnection of the chip

connects to the digital ground through the substrate, the op amp circuit is also

associated to the A/D circuit through the substrate.

To see how the digital circuit affects the op amp circuit, a test circuit is set

up to measure the power supply current. Fig. 6.2 is the schematic of a simple test

circuit to check the possible parasitic currents. A 10 Ω resistor is placed between the

negative power supply and the negative supply terminal pin of the op amp.
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Figure 6.2: Debugging circuit setting
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The pins 21 and 26 are the common analog positive supply voltage Vcc which

is shared between the op amp circuit and the analog part of the mixed A/D circuit.

They are tied to 1 V voltage source for the configuration of feedback op amp test. The

pins 20 and 27 are the common analog negative supply voltage Vss (the P substrate

of N channel device) shared between the op amp circuit and the analog part of the

mixed A/D circuit. Vss is also called analog ground gnda in an alternative way. They

are tied to -1 V source in this test circuit. The pins 6 and 40 are the digital ground

of the A/D circuit. They are tied inside the chip layout to analog ground pins 20

and 27 which are used for the most negative analog supply -1 V. As a result, the

analog ground is connected with the digital ground due to the common substrate in

the process.

The pins 1 and 15 are the digital power supply voltage Vdd of the digital part

of the mixed A/D circuit. They are tied to the nwell voltage, which changes from -1

V to 1 V during test. The current is measured by recording the voltage across the

10 Ω resistor between the -1 V dc source and the analog negative voltage terminals

pins 20 and 21. By adjusting the digital supply voltage Vdd, which is also the nwell

voltage, the current through the op amp circuit power supply is shown in Table 6.1.

The simulated current of the op amp supply by CADENCE is around 55 µA.

Table 6.1: The test results of the current of the op amp chip

nwell voltage (Vdd) current if op amp functions

floating 200 µA no
-1 V 48 mA no
0 V 920 µA yes
1 V 5.99 mA yes

When the digital power supply Vdd is floating (not connected to anything),

the current flowing through the 10 Ω resistor is under 200 µA (the lowest current

recorded in the table). At that point, the op amp does not function. For example,
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with a 100 mV sine wave input, with the feedback inverting gain at 4.7, the output

waveform does not show any gain over the input. Consequently, Vdd can not be left

floating.

The op amp circuit in feedback connection still does not function as an ampli-

fier if the digital supply voltage Vdd is in the range of -1 V to -0.4 V. When Vdd gets

close to - 0.3 V, the op amp circuit starts to work as a feedback amplifier with some

distortion on the output waveform. The op amp circuit functions when the digital

power supply Vdd is tied to the highest voltage supply 1 V as well as when Vdd is

tied to the middle voltage level 0 V. When Vdd is 1 V, the current 5.99 mA is much

higher than the value 920 µA measured while Vdd is set at 0 V.

After careful inspection on the layout of the whole chip, it is found that the

analog op amp circuit is put on the digital part of the ESD pads used to protect

the integrated circuit from electrostatic damage. The left side is the analog part of

the mixed A/D circuit and the right side includes the digital part of the A/D circuit

and the analog op amp circuit which should not have been surrounded by the digital

ESD. The analog ESD is separated from the digital side. The ESD at the left part

is connected to the analog power source and the analog ground. Instead, the ESD at

the right part uses the digital power source and the digital ground. Unfortunately,

the op amp circuit, which is at the bottom of the chip, is put on the digital ESD

side. This explains that why the op amp could not function when Vdd is floating or

connected to -1 V. Since the ESD is mainly comprised of a diode connected PMOS

at the top and a diode connected NMOS at the bottom as shown in Fig. 6.3. If Vdd

is set lower than the voltage level at the pad, the PMOS will be forward biased.

Even though the total current at the analog ground Vss is 5.99 mA when

Vdd is tide to 1 V, most of the current might come from the digital current which

is not related to the analog op amp. With the ESD circuit functions, one possible

reason for this large current might come from the incomplete shut down of the A/D

digital circuit. Manually turning off the digital circuit is applied to the chip under

test. A sine wave with low frequency around 10 KHz is connected to the digital pin
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Figure 6.3: ESD circuit

Clk vin of the A/D circuit while Vdd is kept constant at 1 V. The current at Vss

was checked and found to decrease from 5.99 mA to about 160 µA. The input signal

is then disconnected from the digital pin Clk vin, the current at Vss is measured to

be near 60 µA. The op amp is assumed to operate with the correct current since

the measured current value is very close to the simulated value, which is 55 µA. The

small difference might come from the current of the analog part of the mixed A/D

circuit and the leakage current. The op amp in feedback connection is then tested

and the performance is as expected. One important lesson learned here is not to put

the sensitive analog circuit close to the power digital device.

6.3 Op amp Test Setup

A simple test circuit can be built by placing components on a breadboard and

connecting them with jumper wires. It is convenient to get a rough estimation of

the chip performance on a breadboard in a short period of time. It also saves money

since the breadboard is a cheap reusable solderless device. But the noise contribution

from the breadboard and wires is usually high enough to affect the behavior of the

circuit experiments. The specific printed circuit board (PCB) is necessary for testing

circuit designs, especially for low voltage high gain op amps which demand low noise
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environment. The layout of the PCB designed for the op amp chip test is shown in

Fig. 6.4.

Figure 6.4: The PCB layout

Two different settings are provided on the PCB. The one on the left is the

configuration set up for testing the unit feedback response. The one on the right

can provide various feedback gains to measure the gain and bandwidth for the corre-

sponding feedback factor F. Decoupling capacitors are used to reduce the fluctuation

noise from the source supplies.

6.4 Op Amp Closed Loop Characteristic Test Configuration

The configuration for measuring the unit feedback response, the slew rate, the

settling time, the input common-mode voltage range, and the input-offset voltage is

shown is Fig. 6.5.

The input offset voltage is not only due to the small bias mismatches in design

but mostly caused by device and component mismatches through fabrication. Most

simulators are not capable of predicting device and component mismatches from the

fabrication process. The input offset voltage is simulated to be only 37 nV by CA-
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CL RL

VOUT

VSIN

or

VSTEP

or

AGND

Figure 6.5: Op amp unit feedback configuration

DENCE spectre. For over 10 chips tested, the input offset voltages range from 0.3

mV to 3 mV due to the process variation.

The configuration for measuring the gain bandwidth and output voltage swing

is shown in Fig. 6.6.

CL RL

VOUT

VIN

R1

Rf

Figure 6.6: Op amp gain bandwidth configuration

The value of the resistor Rf should be large enough compared to the load

resistor RL in order not to cause significant dc current load on the output of the op

amp.

6.5 Opamp Open Loop Gain Test Methods

While the closed loop properties can be easily and straightforward to test with

feedback setting, measuring the open loop characteristics is much more difficult to

perform. The differential gain of an op amp is quite high. A small offset voltage is

generally enough to saturate the op amp to the power supply level. With the supply
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voltages decreasing, even a very little input noise can drive the op amp out of the

power supply limits. For the composite cascode op amp with a gain of one million at

± 1 power supplies, an input noise level as low as 1 µV is sufficient to saturate the

op amp. It is hard to directly measure the open loop gain of the op amp. Suitable

approaches are needed to measure the open loop gain for low voltage high gain op

amp. A few test strategies are presented below along with their pros and cons.

6.5.1 Measurement Strategy One

One conventional way to check the open loop frequency response is by mea-

suring closed loop gain phase response at various values of feedback factor F. If the

measured closed loop gain phase response at different values of F could match the

simulated closed loop gain phase response respectively, there is a good chance that

the open loop gain phase response of the op amp under test is similar to the simulated

open loop gain phase response. There might be some difference between the simulated

closed loop response and the measured closed loop response due to parasitic effects

and process variations. The dominant pole of the composite cascode op amp under

test is only a couple of Hz after compensation by simulation. A second order op amp

model can be built as shown in Eq. (3.1) if the equivalent second pole, which patterns

all non-dominant higher poles into a single pole, can be found. Then, by using Eq.

(2.19), the closed loop transfer function becomes

Gcl(s) =
A0

1+A0F

1 +
s2

p1p2
+s( 1

p1
+ 1

p2
)

1+A0F

. (6.1)

The corresponding expressions of the gain and phase of the closed loop transfer func-

tion are denoted as

GdB(ω) = 20 log | A0

1 + A0F
| − 20 log |1 −

ω2

p1p2

1 + A0F
+ jω

( 1
p1

+ 1
p2

)

1 + A0F
| (6.2)
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and

Gphase(ω) = arctan

ω( 1

p1
+ 1

p2
)

1+A0F

1 −
ω2

p1p2

1+A0F

. (6.3)

It is possible to predict the poles and the midband gain by using the experi-

mental gain and phase of the op amp measured at different values of F. With a gain

phase meter, the closed loop response can be tested and compared to the simulated

response. This indirect way by employing a two pole op amp model to estimate the

characteristics of the op amp is similar to the studies reported in [49,51–53,56]. Those

reported measurement approaches do not fully consider the nonlinear distortion or

more complete models with orders higher than two to represent the op amp behavior

accurately. The two pole model works well for op amps with one low dominant pole

and a second pole higher or near the unity frequency. For op amps using cascode

connections or other kinds of gain boosting schemes, the second pole of the op amp

will be much lower than the unity frequency. Moreover, many multistage op amps

have zeros and some significant poles besides the second pole. The classical two pole

model assumption does not hold for these op amps and is not capable of providing

precise modeling and measurements.

In [57], more complicated models of op amps are considered and the calibra-

tion of the measurement setup [58] are presented. Most methods require a lengthy

procedure of calculations, sophisticated instrumentation, and/or complicated bench

setup to implement the test. In addition, most methods do not work well for CMOS

devices with low power supply voltage.

To address the inaccuracy of applying the indirect modeling of feedback op

amps to describe the open loop characteristics, other simple but reliable test meth-

ods of op amps using typically available bench test equipment are investigated and

presented below.
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6.5.2 Measurement Strategy Two

The second configuration for measuring the open loop gain is shown in Fig.

6.7.

CL RL

VOUT

VIN

1000R

RR

1000R

Figure 6.7: Op amp open loop gain test configuration 2

This strategy suggests measuring the open loop gain by using closed loop ar-

chitecture with a voltage divider. Special care for offset cancellation needs to be

applied before measurement. The offset voltage is unacceptable when a high gain op

amp is under test since the offset would easily saturate the op amp. One possible

solution is to use another voltage of the same magnitude and opposite polarity to

cancel the offset. After mitigating the offset voltage as much as possible, the config-

uration shown in Fig. 6.7 is utilized to measure the open loop gain of the op amp.

The voltage divider is used to attenuate the input voltage down to one thousandth or

even lower magnitude while the op amp is configured with a closed loop gain around

one thousand or even higher. With the measured close loop gain G and known feed-

back ratio F, the open loop gain could be calculated by solving equation G = A
1+AF

.

The closed loop gain is set between 1000 and 10000. Higher chosen closed loop gain,

better error tolerance can be obtained. Clean PCB with low noise, high accuracy film

resistors, and high precision signal generator that can produce low frequency signal

with little distortion are necessary for this test method.
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Figure 6.8: Op amp open loop gain test configuration 3

6.5.3 Measurement Strategy Three

The third configuration for measuring the open loop gain is shown in Fig. 6.8.

DC voltage Vtest is adjusted to drive Vout to both the plus rail and the negative

rail. Voff is measured at these two situations. Here Voff is actually the offset voltage

of the op amp multiplies 100 for the setting shown in Fig. 6.8. Various values of

resistors could be selected for different multiplication levels. The open loop gain of

the op amp under test is then calculated by

Aol =
∆y

∆x

=
∆Vout

∆Voff

100

. (6.4)

If the measured difference of Voff at two rails is about 0.1 mV, the open loop

gain of the op amp will be about 1 million. A problem of this strategy is that the

noise picked up from the ESD, resistors, flicker noise, and the test board will be

amplified via the op amp under test. By employing a clean PCB and more filtering,

Voff shows less variation. This configuration could also be used to test the common

mode rejection ratio and power supply reject ratio with minor adjustments on the

power supply voltages. For op amps with low flicker noise, this strategy works very

successfully.
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6.5.4 Measurement Strategy Four

The fourth configuration for measuring the open loop gain is shown in Fig.

6.9.

CL RL

VOUT

VIN
Rs

Rg

Figure 6.9: Op amp open loop gain test configuration 4

The negative terminal of op amp is connected to ground for symmetric power

supplies or the common mode voltage for the single power supply. A slowly changing

ramp signal with small peak voltage amplitude is applied to the positive input of the

op amp. A voltage divider consisting of Rg and Rs are used to further attenuate the

input signal in order to get more accurate measurement of the open loop gain without

the slew rate limit effect. Comparing the slope of the output signal to that of the

input ramp, the open loop gain can be calculated by

Aol =
∆Vout

∆Vin

=
∆Vout

∆x
∆Vin

∆x

. (6.5)

The benefit of this test strategy is that the signal level could be set higher with-

out worrying about the output reaching the rail voltage since the slope of the active

range rather than the absolute voltage amplitude is the parameter to be measured.

This method is more robust to noise than the other approaches discussed.
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6.6 Composite Cascode Op Amp Chip Test Results

The supplies of 1 V and -1 V are applied to the op amp chip. The power

consumption of the chip is around 120 µW based on the supply current which is

measured to be close to 60 µA. The offset voltages on a sample of ten chips was found

to be between 0.3 mV and 3 mV. The output load of the op amp consists of a 100

pF capacitor in parallel with a 25 kΩ resistor. The CMRR and PSRR are measured

to be above 100 dB. The main test results are summarized in Table 6.2.

Table 6.2: Opamp Test Results

DC Gain (dB) ≥ 117
GBW (MHz) 1.2

PM (◦) 43
SR+/SR− (V/µs) 0.27/0.43

Ts+/Ts−(µs)(to 1%) 3.85/2.2
Power(µW) ≤ 120

Supply Voltage(V) ±1

The open loop gain, the most important performance parameter of the op

amp chip, has been measured with all four strategies mentioned in this chapter.

Strategy one provides confidence of the test chip due to the close match between

the measurement data and the simulation curves. But the exact estimation of the

open loop gain could not be attained from this method because of the inaccurate

transfer function modeling. Strategy two assesses the open loop gain to be above 90

dB. The lack of high precision signal generator that can produce low frequency signal

with little distortion prevents the more accurate evaluation of the open loop gain. A

spectrum analyzer plot shows the signal generator available in the analog lab produces

a low frequency signal with significant harmonic distortion. Strategy three estimates

the op amp gain to be above 100 dB. However, the more precise measurement of

the gain is not possible due to the noise of the test chip, which is presented as the

fluctuation of the amplified offset voltage. The result of 117 dB open loop gain is
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given by strategy four because the measurement of the slope instead of the magnitude

value is more robust to noise. Using a voltage divider to decrease the input signal

to get an exact measurement of the open loop gain will eventually be limited by the

input noise floor of the test chip. The extremely low signal noise ratio leads to the

corruption of the output signal slope. The further evaluation of the op amp open

loop gain as the expected 120 dB is prohibited by the considerable flicker noise of the

MOSFET device. Nevertheless, the adequately close match between the op amp chip

experimental results and the CADENCE Spectre Spice Simulation demonstrates that

the prototype chip has achieved the expected performance in the case of low current

weak inversion operation of the composite cascode output device.

6.7 Conclusion

Detailed test set up, debugging, and test methods implemented to describe

the op amp performance are presented in this chapter. It discusses the increasing

challenge to measure the high gain op amp characteristics when the power supplies

are getting smaller. Several simple bench test methods are investigated and proposed

to characterize the op amp characteristics, in particular the open loop gain. Those

practical techniques do not require sophisticated instrumentation or a complicated

lab setup. The requirements and the suitability of the different measurements in

various situations are also evaluated.
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Chapter 7

Conclusion and Future Research

Compensation methods of op amps are investigated along with their pros and

cons in order for designers to have a guide to choose the approach suitable for different

situations. This dissertation proposes a creative feedforward compensation method

which overcomes the serious drawback of bandwidth narrowing by the widely used

pole-splitting method. It can improve the phase margin as well as optimize the

bandwidth of the op amp. The feedforward method can be easily applied to the

existing popular two gain stage op amp architectures with very little alteration. The

mathematical derivation and circuit simulation demonstrate the advanced properties

and improved performance of this feedforward compensation technique.

This proposed innovative feedforward compensation method of op amps is ex-

plored by a creative mixed mode design methodology. This design approach combines

intuition, mathematical analysis, and mixed level simulation. The mixed level sim-

ulation is comprised of both system level simulation and device level simulation for

some critical analog circuit path. In this way, the behavior of new design ideas can

be verified in an effective way as well as providing sufficient accuracy to predict the

circuit performance realistically.

With the growing demand for low power mixed signal integrated circuits for

portable or nonportable high performance systems, analog circuit designers are chal-

lenged with making analog circuit blocks with lower power consumption with little

or no performance degradation. The classic Widlar op amp architecture, originally

developed for the BJT, has required modification for use with CMOS devices. In par-

ticular, it has proved difficult to match the open loop gain of bipolar op amps with
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CMOS technology. This is due to the inherently lower transconductance of CMOS

devices as well as the gain reduction due to short channel effects that come into play

for submicron CMOS processes. A feasible configuration of a high gain low power op

amp following Widlar architecture is proposed. This op amp uses composite cascode

connections for the differential input, a common source second stage, and a current

mirror. By selecting the appropriate current and choosing the W
L

aspect ratios of tran-

sistors wisely, some MOS devices operate in subthreshold range while the remainder

work in the active range.

A prototype of the composite cascode op amp has been laid out and fabricated

in a 0.25 µm CMOS process. The fabricated op amp test results show that the BSIM3

model in CADENCE Spectre Spice Simulation matches closely to the experimental

results in spite of the low current weak inversion operation of the composite cascode

output device. The experiment thus provides confidence in the simulation for other

similar designs.

The experimental measurement of the op amp open loop characteristics be-

comes more difficult as the power supply voltage decreases. When the multiplication

of input referred noise and the open loop gain of the op amp exceeds the voltage level

of power supplies, it is difficult to directly measure the open loop gain of the op amp.

A few viable techniques are proposed to measure the op amp open loop parameters

using typically available bench test equipment.

7.1 Contributions

Several significant contributions have been made to op amp compensation and

high gain low power op amp design in this dissertation. The main contributions of

this dissertation are summarized in this section.

7.1.1 Current Compensation Methods Investigation

Although amplifier compensation has been a well-studied topic in analog cir-

cuit design for many years, an up-to-date comparison and investigation of modern
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compensation methods is periodically required to check the classical methods against

modern processes. This survey summarizes some popular compensation methods of

the op amp and points out their advantages and disadvantages. A guide to using

different compensation methods based on the primary requirements and output load

is given.

7.1.2 Feedforward Compensation Method

This proposed feedforward compensation method is fully compatible with the

classical general purpose operational amplifier configuration. This architecture also

has the advantage of stabilizing the op amp without reducing the bandwidth as much

as most commonly used compensation methods do.

7.1.3 System-Level and Combined Device/Transfer Function Simulation
Methodology

A design method which integrates intuition, mathematical derivations, system

level simulations, and combined device/transfer function simulations is introduced.

The proposed system-level and device-level mixed-mode simulation can give insights

of creative thoughts, simplify the analysis by using ideal blocks for some circuitry

while providing necessary device model properties.

7.1.4 Stability Analysis of the Feedforward Architecture

A closed loop stability criteria is derived and a design guide line for maxi-

mally flat frequency response is suggested to provide circuit stability. Mathematical

derivations along with simulation results are presented to correlate the theory with

the implementation.

7.1.5 MOSFET in Subthreshold Inversion Used for Low Power Op Amp
Designs

Operating a MOSFET in the weak inversion region or subthreshold region is

very useful for low power applications. A wise choice of the quiescent current as well
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as the proper W
L

aspect ratios of the transistors can make some of the devices operate

in strong inversion region while other devices operate in the subthreshold region. The

appropriate selections of these values are critical for the function of the circuits. A

current mirror using the composite cascode connection is also proposed to bias the

circuit.

7.1.6 Architecture of A High gain Composite Cascode Operational Am-
plifier

A two-gain stage op amp which consists of a differential input composite cas-

code stage operating at a bias current of 3.65 µA and a common source composite

cascode second stage provides an open loop gain around 120 dB with 110 µW power

consumption. With the high output impedance and the low current of the composite

cascode connections, a high gain stage is possible with small chip area and power

dissipation. This high impedance load also leads to flexible and simple compensation

schemes. A phase margin of 43◦ is achieved using conventional Miller compensation

with a capacitor of only 3.5 pF while driving a 100 pF load.

The design follows the classic Widlar architecture. The proposed op amp

produces an open loop gain of one million and shows a favorable slew rate and GBW

product compared to other amplifiers driving large capacitive loads. This design is

intended for applications where simplicity of layout, small cell size, and low power

are important. The open loop gain of this design is comparable to bipolar op amps

and exceeds all known reported CMOS designs using the classic Widlar architecture.

The power supply voltage can be further reduced from 2 volt to 1.5 volt due to the

freedom in biasing the subthreshold devices.

7.1.7 Modified Composite Cascode Operational Amplifiers for Different
Applications

The proposed op amp which employs composite cascode connections for both

differential input stage and second gain stage along with a source follower output stage

could be easily modified to adapt to different operating conditions. The second stage
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could be implemented with a regular common source stage to increase the bandwidth.

The source follower stage could be replaced with a class AB output stage for rail to

rail output swing.

7.1.8 Practical Test Methods of High Gain Op Amps

It is well known that it becomes more difficult to measure the op amp char-

acteristics, especially the open loop gain, as the power supplies decrease for compat-

ibility with modern low voltage processes. When the multiplication of input referred

noise and the open loop gain of the op amp exceeds the power supply voltage, it is

difficult to directly test the open loop gain of the op amp. In addition, if the signal

magnitude is even smaller than the noise magnitude at the input, the output wave-

form would have little meaning. This work deals with the practical bench test of the

open loop gain of the op amp and presents several simple but reliable test methods

of op amp open loop gain using typically available bench test equipment.

7.2 Future Research

This dissertation has explored the area of op amp compensation approach, high

gain low power op amp design, and practical op amp open loop gain test methods.

Due to the nature of the wide research topic, there are still several topics for future

work. For example, the high gain composite cascode stage was used in this work as

a gain element for classic op amp design. Other applications of this stage could also

be explored, especially in light of the demonstrated ability to accurately model the

stage using conventional BSIM3 models.
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