

DESIGN OF ROBUST AND FLEXIBLE ON-CHIP

ANALOG-TO-DIGITAL CONVERSION
ARCHITECTURE

A Dissertation
Presented to

The Academic Faculty

by

Daeik D. Kim

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in
School of Electrical and Computer Engineering

Georgia Institute of Technology
July 2004

Copyright © 2004 by Daeik D. Kim

DESIGN OF ROBUST AND FLEXIBLE ON-CHIP

ANALOG-TO-DIGITAL CONVERSION
ARCHITECTURE

Approved by:

Dr. Martin A. Brooke, Committee Chair

Dr. Paul E. Hasler

Dr. David E. Schimmel

Dr. John D. Cressler

Dr. Paul A. Kohl
(School of Chemical and
 Biomolecular Enginerering)

30 July 2004

To the greatest engineer

God,

who designed heart and mind.

 iv

ACKNOWLEDGEMENT

My sincerest appreciation is for my advisor Dr. Martin A. Brooke, the institute's

best advisor award winner. Not only has he shown the passion for research and

instinctive sense for electronic phenomena, but also he has been a good teacher and

mentor to me. Also I would like to thank to Dr. Nan M. Jokerst for her support with

optoelectronic integration and testing.

I gratefully acknowledge Dr. David E. Schimmel, Dr. Paul E. Hasler, Dr. John D.

Cressler, and Dr. Paul A. Kohl for their service on my committee. Their knowledge and

guidance were essential to complete my research. Throughout my graduate study, I have

been lucky to get a scholarship from Korean government, and I want to give thanks for

the Korean people's support.

In addition, I am grateful for my parents and parents-in-law for their love, prayers,

and support. Also I would like to thank to my lovely future babies for their generosity to

wait to be born. My final thoughts and thanks go to my beautiful and precious wife

Minchi, whose love and kindness always cheered and comforted me.

v

TABLE OF CONTENTS

TABLE OF CONTENTS ... v

LIST OF TABLES .. vii
LIST OF FIGURES ... viii
SUMMARY ... xii
INTRODUCTION... 1

Chapter 1 BACKGROUND ... 5

1.1 Bio-Optoelectronic Sensor System... 6

1.2 ADC Requirements... 7

1.3 ADC Family Selection for Sensor SoC Application... 12

1.4 SoC ADC Comparison Studies... 14

Chapter 2 ARCHITECTURAL COMPARISON OF SYSTEM-ON-A-CHIP ADC
WITH STATISTICALLY DEFINED INPUT .. 22

2.1 Architectural Comparison... 24

2.2 Analytic Comparison for Traditional Front-end ... 26

2.2.1 Band-limited Input Signal Model A .. 26

2.2.2 Flat Input Signal Model B ... 28

2.3 Analytic Comparison for Analog Front-end with Direct Sample-and-Hold 30

2.3.1 Band-limited Input Signal Model A .. 31

2.3.2 Flat Input Signal Model B ... 32

2.3.3 Analog Front-end with Direct Conversion .. 33

2.3.4 Summary .. 36

2.4 Converter-constrained ∆Σ Conversion .. 36

2.5 Summary of Analog Front-end Performance Comparison ... 37

Chapter 3 CODEC MODELING OF ADC AND DECODING PERFORMANCE
ANALYSIS ... 41

3.1 ADC Modeling as a Communication Channel ... 42

3.2 ADC Encoding and Decoding .. 44

vi

3.3 ∆Σ Nonlinear Decoding Algorithm Performance in Ideal Circuits 50

3.4 ∆Σ Nonlinear Decoding Performance with Nonidealities .. 53

3.4.1 Stationary Circuit Nonlinearity.. 53

3.4.2 Performance with Noise Sources ... 56

3.5 Summary with Comprehensive Evaluation of ∆Σ Decoding Algorithms................... 58

Chapter 4 CASE STUDY ON SENSOR ADC READOUT SYSTEM 60

4.1 Embedded Photo Detector and Array ... 61

4.2 Analog Front-end.. 66

4.3 ∆Σ ADC Design.. 72

4.4 Single-slope ADC ... 77

4.5 Conversion Performance Comparison .. 83

4.5.1 Architectural Comparison of ADCs... 83

4.5.2 Algorithmic Comparison of ADCs .. 85

4.5.3 ADC Robustness Comparison with Simulations ... 87

4.6 Sensor System-on-a-Chip Fabrication and Integration... 94

4.7 ∆Σ ADC Sensitivity Measurement ... 97

4.8 ∆Σ ADC Sensor System Measurement... 100

4.9 Summary of Case Study.. 102

Chapter 5 CONCLUSION ... 103

5.1 Future Research .. 103

5.2 Conclusion .. 104

Appendix A DECODER-CENTERED ADC.. 106

Appendix B ∆Σ ENCODER-CENTERED ADC .. 115

Appendix C ANALOG FRONT-END MODELING ... 140

Appendix D INFORMATION THEORY ... 156

Appendix E SI-CMOS TRANSISTOR SPICE MODELS .. 163

Appendix F MATLAB SCRPITS .. 166

Appendix G HSPICE SIMULATION SCRIPTS... 178

Appendix H PERL SCRIPTS .. 187

Appendix I LABVIEW CODES FOR DATA ACQUISITION 191

REFERENCES.. 197

VITA... 207

vii

LIST OF TABLES

Table 1: Comparison of the SNR of integrating Nyquist sampling and oversampling
front-end models ... 10

Table 2: Recent books contain data converter topics ... 16

Table 3: Articles on ∆Σ data converter comparison ... 19

Table 4: Analog front-end configurations .. 25

Table 5: Relative SNR comparison of all cases with input signal model A, signal
bandwidth fM ... 40

Table 6: Decoding performance with all non-ideal effects... 59

Table 7: Single-slope ADC implementation examples... 108

Table 8: Dual-slope ADC implementation examples ... 111

Table 9: Iterative algorithm ADC implementation examples... 114

Table 10: ∆Σ ADC implementation examples.. 129

viii

LIST OF FIGURES

Figure 1: Bio-optoelectronic sensor system block diagram...7

Figure 2: Definition of front-end and ADC in ADC system ...23

Figure 3: Traditional ADC front-end SNR performance with input signal model A
versus input signal bandwidth..27

Figure 4: SNR plot as a function of signal bandwidth and filter cut-off frequency for
the 6th order LPF case ...28

Figure 5: Traditional ADC front-end SNR performance with input signal model B29

Figure 6: Direct sample-and-hold ADC front-end SNR performance with input signal
model A versus input signal bandwidth...32

Figure 7: Direct sample-and-hold ADC front-end SNR performance with input signal
model B versus buffer cut-off frequency ...33

Figure 8: Direct sample-and-hold ADC front-end SNR performance with input signal
model A versus input signal bandwidth...34

Figure 9: Direct sample-and-hold ADC front-end SNR performance with input signal
model B versus buffer cut-off frequency ...35

Figure 10: All ADC analog front-end SNR performance with input signal model A
versus input signal bandwidth..38

Figure 11: All ADC analog front-end SNR performance with input signal model B
versus filter or buffer cut-off frequency...39

Figure 12: ∆Σ channel capacity as a function of oversampling ratio.................................44

Figure 13: Encoding and decoding of analog-to-digital conversion process.....................45

Figure 14: The solution tracking behavior of the proposed algorithm 49

Figure 15: Error model of 1st-order 1-bit ∆Σ ADC.. 50

Figure 16: Mean-squared error performance of ideal ∆Σ decoding schemes 52

Figure 17: Average decoding time of each decoding scheme .. 52

Figure 18: Mean-squared error with DC offset coffset in comparator54

Figure 19: Mean-squared error with integrator leakage α ...55

Figure 20: Mean-squared error with feedback error β...56

Figure 21: Mean-squared error with input signal noise ...57

ix

Figure 22: Mean-squared error with quantizer noise...58

Figure 23: Simplified sensor system diagram..60

Figure 24: Embedded PiN photo detector..62

Figure 25: Embedded BJT photo detector ...62

Figure 26: Photo and dark current measurement with evanescent coupling to Si-
CMOS detector ..63

Figure 27: Time domain response to 85 Hz-chopped signal ...64

Figure 28: Time domain response to 1 kHz-chopped signal ...65

Figure 29: Side view of Si-CMOS circuit A... 66

Figure 30: Side view of Si-CMOS circuit B... 66

Figure 31: Analog front-end buffer schematic diagram ... 68

Figure 32: Output current of analog front-end with DC sweep .. 68

Figure 33: Bias voltage output to detector with input DC sweep 69

Figure 34: Analog front-end frequency response with varying input current 70

Figure 35: Analog front-end output equivalent noise with varying input current 70

Figure 36: Analog front-end frequency response ... 71

Figure 37: Analog front-end input equivalent noise ... 72

Figure 38: First-order ∆Σ ADC function block diagram .. 73

Figure 39: First-order ∆Σ ADC circuit schematics... 74

Figure 40: First-order ∆Σ ADC circuit layout .. 75

Figure 41: First-order ∆Σ ADC extracted circuit simulation output................................. 76

Figure 42: First-order ∆Σ ADC DC sweep output acquisition with comb filter............... 76

Figure 43: Single-slope ADC function block diagram ... 77

Figure 44: Frequency response of single-slope ADC analog front-end 78

Figure 45: Single-slope ADC analog front-end input equivalent noise............................ 79

Figure 46: Single-slope ADC circuit schematics.. 80

Figure 47: Single-slope ADC circuit layout ... 81

Figure 48: Single-slope ADC extracted circuit SPICE simulation output.........................82

Figure 49: Single-slope ADC DC sweep output..82

Figure 50: ∆Σ ADC available SNR ...84

Figure 51: Single-slope ADC available SNR ..84

Figure 52: Decoding algorithmic comparison of ADCs ..86

Figure 53: ∆Σ ADC DC sweep with temperature sweep 0-100ºC.....................................87

x

Figure 54: Single-slope ADC DC sweep with temperature sweep 20-30ºC......................88

Figure 55: ∆Σ ADC DC level acquisition sweep with 34 CMOS transistor models89

Figure 56: Single-slope ADC DC level acquisition sweep with 34 CMOS transistor
models ..90

Figure 57: Nyquist ADC SNR degradation with clock jitter...91

Figure 58: Randomly generated clock jitter example ..92

Figure 59: ∆Σ ADC available SNR with jitter noise .. 93

Figure 60: Fabricated chip photo .. 94

Figure 61: Photo detector array addressing diagram .. 95

Figure 62: Integrated Mech Zender interferometric waveguides 96

Figure 63: Laser coupling into integrated waveguide... 97

Figure 64: ∆Σ ADC sensitivity measurement with electrical input 98

Figure 65: ∆Σ ADC sensitivity measurement with optical input...................................... 99

Figure 66: Vapor sensor system block diagram.. 100

Figure 67: Vapor sensor system measurement ... 101

Figure 68: Single-slope ADC function block diagram ... 107

Figure 69: Single-slope ADC integrator output waveform... 107

Figure 70: Dual-slope ADC function block diagram.. 109

Figure 71: Dual-slope ADC integrator output waveform..110

Figure 72: Iterative algorithmic ADC function block diagram112

Figure 73: Delta modulation signal flow diagram ...116

Figure 74: Delta modulation output waveform..117

Figure 75: Quantization error in time domain with different quantization levels118

Figure 76: Quantization error in frequency domain with different quantization levels ..119

Figure 77: Normalized frequency concept diagram...120

Figure 78: Sampled frequency concept diagram ...121

Figure 79: Oversampling concept diagram..122

Figure 80: Block diagram of the first order ∆Σ ADC..123

Figure 81: Shaped quantization noise spectra with noise shaping filter order N=1,2,3 ..124

Figure 82: Shaped quantization noise spectrum with first-order ∆Σ modulator and
random input ..125

Figure 83: SNR versus oversampling ratio with noise sampling filter order N=1,2,3126

Figure 84: Signal reconstruction with 1-bit quantizer ...127

xi

Figure 85: Signal reconstruction with 1-bit noise shaping quantizer 128

Figure 86: Tones excited with first order 1-bit noise shaping ADC............................... 130

Figure 87: DC error pattern of first order ∆Σ ADC .. 131

Figure 88: Simplified decimation filter block diagram... 134

Figure 89: Impulse response of linear filters .. 135

Figure 90: Frequency response of linear filters .. 136

Figure 91: Second-order ∆Σ modulator signal flow diagram ... 138

Figure 92: Converter state space trajectories ...139

Figure 93: Nyquist and oversampling with anti-alias LPF and sample-and-hold141

Figure 94: Direct sample-and-hold and direct converter ...141

Figure 95: Input signal models. A=abruptly band-limited white noise, B=white noise,
and C=first-order low-pass filtered white noise ..144

Figure 96: Input buffer frequency responses ...145

Figure 97: SNR improvement of Butterworth filters for band limited input C147

Figure 98: Voltage sample-and-hold model ..148

Figure 99: Current integrating sample-and-hold frequency response..............................150

Figure 100: Single-slope ADC conversion error example without sample-and-hold......151

Figure 101: Single-slope and pseudo ideal ADC conversion error152

Figure 102: Continuous-time ∆Σ ADC model...153

Figure 103: Frequency response of continuous-time ∆Σ ADC model155

Figure 104: Continuous-time ∆Σ ADC frequency response normalized to signal band .155

Figure 105: Bandwidth efficiency diagram ...162

Figure 106: Main panel of data acquisition code.. 192

Figure 107: LabView code structure... 192

Figure 108: Daq0R2WLoop.vi ... 193

Figure 109: Daq0r2WControl.vi... 193

Figure 110: Daq0RCountProc.vi .. 194

Figure 111: Daq0RDataProc.vi... 194

Figure 112: Daq0Read.vi .. 195

Figure 113: Daq2Write.vi ... 195

Figure 114: DaqArrayU32toDBL.vi... 196

Figure 115: DaqFileWrite.vi... 196

xii

SUMMARY

This dissertation presents a comprehensive design and analysis framework for

system-on-a-chip analog-to-digital conversion design. The design encompasses a broad

class of systems, which take advantage of system-on-a-chip complexity. This class is

exemplified by an interferometric photodetector array based bio-optoelectronic sensor

that is built and tested as part of the reported work.

While there have been many discussions of the technical details of individual

analog-to-digital converter (ADC) schemes in the literature, the importance of the analog

front-end as a pre-processor for a data converter and the generalized analysis including

converter encoding and decoding functions have not previously been investigated

thoroughly, and these are key elements in the choice of converter designs for low-noise

systems such as bio-optoelectronic sensors.

Frequency domain analog front-end models of ADCs are developed to enable the

architectural modeling of ADCs. The proposed models can be used for ADC statistically

worst-case performance estimation, with stationary random process assumptions on input

signals. These models prove able to reveal the architectural advantages of a specific

analog-to-digital converter schemes quantitatively, allowing meaningful comparisons

between converter designs.

xiii

The modeling of analog-to-digital converters as communication channels and the

ADC functional analysis as encoders and decoders are developed. This work shows that

analog-to-digital converters can be categorized as either a decoder-centered design or an

encoder-centered design. This perspective helps to show the advantages of nonlinear

decoding schemes for oversampling noise-shaping data converters, and a new nonlinear

decoding algorithm is suggested to explore the optimum solution of the decoding

problem.

A case study of decoder-centered and encoder-centered data converter designs is

presented by applying the proposed theoretical framework. The robustness and flexibility

of the resulting analog-to-digital converters are demonstrated and compared. The

electrical and optical sensitivity measurements of a fabricated oversampling noise

shaping analog-to-digital converter circuit are provided, and a sensor system-on-a-chip

using these ADCs with integrated interferometric waveguides for bio-optoelectronic

sensing is demonstrated.

1

INTRODUCTION

This dissertation describes a comprehensive design and analysis framework for

system-on-a-chip analog-to-digital conversion design. The design encompasses a broad

class of systems that take advantage of system-on-a-chip complexity. This class is

exemplified by an interferometric photodetector array based bio-optoelectronic sensor

that is built and tested as part of the reported work.

It is assumed that this class of sensors could use quite large arrays of sensors to

sense inputs signals; for example, linear or two-dimensional photodetector arrays or

hundreds of parallel sensors ganged to improve selectivity. Furthermore, these types of

sensors could require very sensitive front-ends in the presence of possibly wide-band

noise from on-board digital signal processing (DSP) or data communication interfaces;

for example, weak photodetector signals of a few nano amperes (nA) might be important.

In addition, most of these sensors would have relatively low input bandwidths related to

physical world time scales, and may have large amounts of signal processing performed

on the data after it is recorded. For example, many chemical sensors take seconds to

minutes to operate, and there is plenty of time for even slow signal processors to perform

computations on the raw measured data. Finally, because of the slow speed of some of

the sensor input signals, the sensor would need to complete the sensing task expeditiously,

not wasting sensor signal time. This will lead to a need for some parallel hardware at

2

each sensor interface, which in turn leads to a constraint on the size of the direct sensor

interface circuitry.

This last constraint, of expeditious sensor operation, will be discussed in Chapter

1. It will be shown that for the case where there are many parallel weak sensor input

signals placing some of the sensor analog-to-digital conversion (ADC) interface in

parallel at each sensor location is very desirable, from sensing time standpoint, and from

a sensitivity standpoint.

Two aspects of ADC modeling, linear frequency domain analysis and nonlinear

time domain analysis, will be developed to provide theoretical analysis tools for

comparison purposes. In Chapter 2, frequency domain modeling of ADC analog front-

ends will be examined and it will be used to produce an architectural comparison of

ADCs. The analysis will emphasize the importance of data converter pre-processing as a

limiting factor in SoC ADC design.

Chapter 3 is an inquiry into the time domain behavior of the ADC process that

enables a performance comparison using a newly discovered ∆Σ decoding algorithm. The

trade-off between performance and complexity explored in this chapter is useful to

determine what would be an optimal combination of ADC encoding and decoding

schemes.

In this chapter, it will be shown that there are two separately developed

approaches to design data converters, an encoder-centered method and a decoder-

centered method. The encoder-centered method has its emphasis on effective ways to

3

transform inputs to preserve important characteristics and to enhance conversion

efficiency. The intermediate results from the encoder-centered approach are not simple to

understand as they are not in formats resembling the desired output, and, in fact, this

approach requires complex algorithms to produce the desired output. The decoder-

centered method takes a top-down approach to solve the data conversion problem. This

method concentrates on the final result of conversion and intermediate processing

outcomes are therefore similar to the final form of the data.

A good example of the class of encoding-centered converters is the well-known

delta-sigma (∆Σ) encoder and decoder (CODEC), whereas traditional Nyquist sampling

conversion schemes, such as slope-integrating ADCs, iterative algorithmic ADCs, and

flash ADCs, are regarded as decoder-centered methods. The comparison of two types of

ADCs will lead to several important modeling and analysis techniques, which will be

useful as design criteria.

In Chapter 4, ∆Σ ADCs and single-slope ADCs are taken as examples of decoder-

and encoder-centered data converters for a comparison study of sensor readout system

ADCs. Designs of these two ADCs are proposed and compared through the provided

theories and practical considerations. ADC robustness and flexibility are examined with

model variations, temperature dependency, clock jitter, etc. A fabricated SoC sensor

ADC is demonstrated and its performance is measured.

4

The entire thesis provides a qualitative and quantitative analysis that connects

theory and application. It is hoped that this work is not only valuable as an ADC

comparison and evaluation methodology but also as an ADC design framework.

5

Chapter 1

BACKGROUND

In this chapter it is determined that oversampling ∆Σ ADC and integrating ADC

are the best candidates for system-on-a-chip (SoC) sensor ADC applications. These two

types of converters are then compared in both the frequency and time domain (which is

equivalent to a comparison of Nyquist sampling ADCs and ∆Σ oversampling ADCs). It is

shown that under most circumstances the ∆Σ oversampling ADCs provide a sensitivity

advantage of more than 20 dB and do so with much less complex front-end hardware.

This chapter begins with a description of a bio-optoelectronic sensor system

application (BOSS) and from this we derive general sensor SoC ADC requirements

(sections 1.1 and 1.2). An argument that a few ADC designs are more appropriate than

others for sensor system ADCs designs is given in section 1.3. The fact that many

textbooks present useful and detailed design and analysis tools for a few selected SoC

ADCs, but fail to provide a comprehensive comparison between the two important

classes of ADCs considered here, Nyquist ADCs and ∆Σ ADCs, is stated in section 1.4.

Also several published ADC comparison studies are summarized in the same section.

6

1.1 Bio-Optoelectronic Sensor System

The bio-optoelectronic sensor system (BOSS) is a multi-investigator project that

provided the motivation for this study. The BOSS implements an array of real-time SoC

sensors, which detect chemical and biological agents in various forms [1]. The basic

system concept is shown in Figure 1. A product prototype of this system has been

fabricated by other researchers by assembling interferometric waveguides and other

commercial components, such as diode lasers, a photo diode detector array, and an

external signal processing system. The entire prototype package has size of 2.5 by 3.0 by

6.5 inches. The system can detect chemicals such as benzene, chloroform, methylene

chloride, toluene, etc. Also it can detect bio-molecules such as IgG/anti-IgG and

salmonella. The sensitivity of the system is demonstrated to be up to 10 parts-per-billion

(ppb), dependent on the target agents [2-6].

7

Figure 1: Bio-optoelectronic sensor system block diagram

The goal of the BOSS project is to integrate all optical and electrical components

on a stand-alone silicon complementary metal-oxide-semiconductor (Si-CMOS) chip,

which produces an output equivalent to the prototype. This thesis concentrates on the

design of the mixed-signal read-out component, or analog-to-digital conversion

architecture of the BOSS SoC.

1.2 ADC Requirements

In this section we will show that for sensor system-on-a-chip applications, small,

reliable, low-power, and sensitive ADCs are required. The requirements on the size of the

8

system are strict since the integration of optical components takes a large chip area. Also

it is undesirable to have the uneven geometry of the Si-CMOS circuitry beneath the

optical systems. Though there are several cases of successful implementation of optical

components over a Si-CMOS IC [7], the optical components in the BOSS sensor are

interferometric waveguides, which are very sensitive to fluctuations in the refraction

index of material around the waveguide and the smoothness of the waveguide surface.

The integration sites for waveguide, interferometer, and laser will occupy the principal

area of the chip, as will be seen later in the integrated prototype in Chapter 4. The ADC

and the post-signal processing system area will be limited to a small portion of the chip

due to these optical component restrictions and the available low-cost chip sizes provided

by the MOSIS service [8]. Also, the ADC should be located as near as possible to the

sensing components such as photo detectors to avoid signal degradation.

In using the results of the analysis in Chapter 2 it can be shown that in sensor

system-on-a-chip applications, where there is considerable background digital noise or

environmental noise, directly connected oversampling ADCs have a distinct advantage

over Nyquist rate ADCs that integrate the input signal between samples. This is a new

result, as previously (particularly in imaging applications) it has been believed by many

that integration of signal between samples (for example, on a CCD) was the lowest noise

approach.

The specific numbers from the analysis are quite dramatic on this point. To

obtain these numbers, two input signal types were considered, first a band-limited but

spectrally white input was considered, and then the same input but with first order band-

9

pass filtered inputs above the Nyquist rate added. The first input type is not very severe,

mimicking typical complex real world inputs, the second input type is much more severe,

in that the unwanted signals above the Nyquist rate will cause aliasing problems in many

converter types; however, in system-on-a-chip applications, it is quite likely that large

signals due to the digital processing, power supply, or other signal processing circuitry on

the system will appear on the input. This model also represents the case where there is

uncertainty regarding the spectral content of the input, which often occurs in the real

world when systems operate autonomously in uncertain environments. In this case the

choice of converter conversion rate (the Nyquist rate) could be made too low, leaving

some signal power above the Nyquist rate.

In all of the simulations in Chapter 2, a background circuit noise level was chosen

so that the in-band noise of a single stage was 16-bits (98.1 dB) below the signal power.

This is actually more noise than we have measured in our CMOS chips described in

Chapter 4, and provides a measure of the effectiveness of each design considered, in that

the closer the designs signal to noise is to 98.1 dB, the better the design is performing.

Table 1 presents the results, with the details being presented in Chapter 2. For the

less severe band-limited case, the oversampled converter provides a 20 dB advantage

over the integrating Nyquist converter (approximately 3-bits more resolution) due

entirely to out-of-band circuit noise, which is integrated by the Nyquest converter and

removed by the oversampling converter. However, in the case of the more severe input

with unwanted pink signal spectrum above the Nyquist rate (the system-on-a-chip type

10

input), the oversampling converter has an 87.7 dB (more than 14-bits) advantage, due to

the severe aliasing that occurs in the Nyquist rate converter.

Table 1: Comparison of the SNR of integrating Nyquist sampling and oversampling
front-end models

Front-end model

Input signal model

Nyquist
sampling Oversampling Oversampling

advantage

Input signal is white up to
Nyquist 73.5 dB 93.5 dB 20.0 dB

Input signal is white up to
Nyquist and first-order cutoff

(pink) above Nyquist
6.5 dB 94.2 dB 87.7 dB

The overall conclusion of this work is that for the class of applications we are

considering, directly connected oversampling converters are very advantageous. However,

oversampled converters must operate directly connected to the input during the entire

sensing time, to be able to measure the out-of-band signals so they can be filtered out.

Thus, if many sensors are used and sensitivity is the primary concern, parallel

oversampled converters are required to ensure the longest possible sensor connection

time to minimize the in-band noise. If a single oversampled converter were used, then for

a given sensor output rate the converter would only connect to a given sensor for a small

portion of the overall sensor sample time. This would raise the Nyquist rate of the

11

converter and increase the amount of out-of-band noise sampled by the number of

sensors used. For example, if there are 1000 parallel sensors used to make a measurement,

then using a single oversampled converter to make a measurement will produce 1000

times more noise than using 1000 parallel oversampled converters, because each sensor

will be sampled 1000 times slower in the parallel case. With integrating converters, it is

also routine to perform at least the integration in parallel (e.g., CCD imagers). Thus, it

will be assumed that for the class of applications to be considered here, only parallel

oversampling converters make sense. This may not be true for applications where

sensitivity is not an issue.

This places a very severe size constraint on the digitizing portion of the

oversampled converters. Fortunately, there are very compact first-order oversampling

digitizers that use ∆Σ encoding to shape quantization noise and thus achieve high

numbers of bits of resolution with essentially a one-bit architecture. These first-order ∆Σ

converters and the very similar single-slope Nyquist ADCs will be chosen eventually as

the primary converters to be compared in section 1.3. However, in the later parts of this

section, we will consider many other types of converters and show that they are not

appropriate for a sensor of the same class as the BOSS sensor.

The sensitivity of the BOSS sensors is dominated by the resolution of ADC and a

minimum of 12-bits resolution has been found to be necessary to get a meaningful output

when the sensor is implemented from discrete components [9, 10]. It is probable that

compromises in integrating the sensor will raise the sensitivity requirement even higher

12

to 14-bits or more, so we will assume the BOSS sensor class requires very sensitive

converters.

The speed of the integrated circuit is not an overriding issue with this application

since the reaction of chemical and biological agents occurs slowly compared to available

low-cost CMOS signal processing speeds. This slow conversion speed also means that

we assume that considerable off-chip digital signal processing is quite feasible on the

digital chip output. We expect this would be performed just prior to when the sensor data

is used in an application. The lower-bound of the sampling rate is in the order of 0.1-1 Hz

[3, 4].

1.3 ADC Family Selection for Sensor SoC Application

The BOSS sensor can now be categorized as one of a class of ADC applications

that restrict the digitizer size and require high sensitivity, but do not focus on output data

rate or power consumption issues. These attributes, small size of digitizer and high

sensitivity at the expense of higher output data rates and higher power, will restrict the

ADC families we need to investigate to find the best converter designs. We will consider

flash, algorithmic, slope-integrating, and ∆Σ ADCs in this comparison.

Flash type ADCs consist of a very large bank of thermometer coded comparators

and a decoder [11-17]. Most flash ADCs concentrate on high-speed conversion,

sacrificing power consumption, sensitivity, and circuit area for speed [18, 19]. High

13

sensitivity flash type converters are rare, and the available resolution is below 10-bits

[20]. They provide very fast, simple, and straightforward operation, but they are not

suitable for BOSS type sensor SoC integration since they take up too much circuit area.

Algorithmic ADCs refer to a class of ADCs that perform a binary search to find

the conversion result [11-17]. There are many variations on this architecture utilizing

pipelined stages of differing resolution; however, most algorithmic ADCs have 12-bits or

lower resolution, which make them unattractive for sensor applications. In addition the

circuit size becomes large when passive components and the number of pipelined stages

are optimized for high sensitivity (see Table 9 in Appendix A). Thus, although some very

small algorithmic converters have been built, their accuracy is poor, making this family

unsuitable for BOSS-style sensor SoC applications.

Single-slope serial, dual-slope serial, and ∆Σ ADCs are all capable of very

compact digitizers that achieve high resolutions [11-17]. Usually the first two schemes

are implemented as Nyquist sampling converters, while the ∆Σ converters use

oversampling since ∆Σ noise shaping provides dramatic enhancement of accuracy when

combined with oversampling (1-bit ∆Σ sampling can achieve 18 – 24 bits of accuracy

with oversampling [21]). Another major difference is that ∆Σ converters require a digital

decoder or filter to retrieve the measured digital result, whereas slope-integrating

converters produce a final digital result with minimal digital signal processing. For the

BOSS type of application where data rate off chip is not considered an issue and

abundant digital signal processing is assumed to be available off chip, it is not possible to

discriminate between these two ADC families on the basis of the external digital

14

processing required. Thus we are forced to compare these two fundamentally different

ADC technologies to determine which can achieve the best sensitivity.

General descriptions and applications of single-slope ADCs, dual-slope ADCs,

and iterative ADCs are presented in Appendix A. Appendix B provides discussions on

∆Σ oversampling ADCs as encoders and decoders.

1.4 SoC ADC Comparison Studies

Many specialized technical areas, such as signal processing, communication,

control, information theory, radio frequency circuit design, analog circuit design, digital

circuit design, and VLSI system design, are involved in ∆Σ modulator design and

analysis. This means that the study of the converter itself requires a wide range of skills.

As a result, ∆Σ converters have not been fully understood in many aspects, even though

there are numerous successful industrial and academic implementations. New

architectures, variations, and implementations are reported frequently in the literature.

The concept of the ∆Σ modulator first appeared as a patent in 1960, filed by

Cutler in 1954 [22]. Although the concept was attractive, it was not practical for many

years until high performance digital signal processing hardware technology for decoder

design became possible with the development of fine-line VLSI Si-CMOS processes in

the 1980s. In the interim, decoder-centered ADCs that do not need complex decoding

hardware became popular choices for ADC implementations. Today oversampling noise

15

shaping ADCs are widely used for slower speed applications such as audio, and high-

speed ADC designs employ Nyquist rate decoder-centered schemes.

There are many publications in books and journals dealing with ∆Σ ADCs. Table

2 shows recent books on data converter design and analysis.

16

Table 2: Recent books contain data converter topics

Ref. Title Author Year

[15] CMOS Integrated Analog-to-Digital and Digital-to-Analog
Converters

Plassche 2003

[11] CMOS Analog Circuit Design Allen 2002

[13] CMOS Mixed-Signal Circuit Design Baker 2002

[23] Mixed-Signal Systems Handkiewicz 2002

[16] An Introduction to Mixed-Signal IC Test and Measurement Burns 2001

[24] Design of Analog CMOS Integrated Circuits Razavi 2001

[25] CMOS Data Converters for Communications Gustavsson 2000

[12] CMOS Circuit Design, Layout, and Simulation Baker 1998

[17] Analog Integrated Circuit Design Johns 1997

[26] Delta-Sigma Data Converters Norsworthy 1997

[27] Principles of Data Conversion System Design Razavi 1995

[28] Sigma Delta Modulators Hein 1993

[29] Oversampling Delta-Sigma Data Converters Candy 1992

[14] High-Speed Analog-to-Digital Conversion Demler 1991

[30] Analog MOS Integrated Circuits for Signal Processing Gregorian 1986

17

While ∆Σ modulators can be considered as an extension of classic converters

functionally [11-17], they are regarded as a totally different system when a detailed

nonlinear analysis is required [26, 28, 29]. The design of ∆Σ ADCs is mostly conducted

using a linear approximation in the frequency domain. The converter architecture yields

to linear methods when the quantizer in the loop is assumed to approximate to a white

noise source [11-17, 23-25, 27, 30]. This approximation is adequate, provided that the

effective resolution of the converter is high and the input is random. This linearization

approach enables complex higher-order design of ∆Σ ADCs; however, it does not match

experiments and measurements in several aspects as discussed in Appendix B.

With the linearized quantization noise model, the main advantage of ∆Σ

oversampling ADCs over Nyquist ADCs is a simplified analog front-end. Linear ∆Σ

analysis articles and books listed in Table 2 do not provide a complete analysis of the

effects of analog front-ends. A quantitative analysis on how much the oversampling ADC

analog front-end is better or worse than Nyquist ADC is necessary for converter choice

and design, particularly in the BOSS-like system-on-a-chip sensor case, where the small

size of the converter is an issue. Despite its wide use, linear ∆Σ ADC analysis tends to

compute worst-case ∆Σ ADC performance, and it is shown that full nonlinear modeling is

essential for a fair comparison.

To understand both desirable and undesirable nonlinear phenomena in ∆Σ ADCs,

a nonlinear modeling technique is essential [26, 28, 29]. With nonlinear models, known

18

initial states of a ∆Σ ADC and a deterministic signal input are necessary to obtain an

accurate analysis. General analysis tools for unknown internal states and unknown input

signals are still being developed [28, 31]. Those techniques involve complex linear

algebra, projection, and state-space modeling as discussed in Appendix B. However, it

has been shown that better ADC performance can be obtained for a given ∆Σ ADC

design by adopting nonlinear modeling of ∆Σ for decoder design [32]. In general

optimum solutions to ∆Σ oversampled ADC decoder design have yet to be found. Most

of the nonlinear algorithms currently proposed are limited to special cases, such as a

specific noise shaping filter order and architecture. To date, the only general solutions are

based on linear analysis.

There are more than 2,000 ∆Σ modulator related articles currently in the published

literature [33]. Most of the articles and texts concentrate on details of specific conversion

schemes or describe ∆Σ ADCs with simple linear models. While it is well known that

oversampling noise shaping ADCs have achieved better performance for certain

applications than Nyquist ADCs, the reasons why are not well elucidated in any

published articles or texts. Furthermore, ADC analysis and comparison for sensor SoC

integration applications are not found in any references. There are some articles that

discuss comparisons of Nyquist rate ADCs and ∆Σ ADCs, and Table 3 summarizes these

articles.

19

Table 3: Articles on ∆Σ data converter comparison

Ref. Title Auhtor Year

[34] Comparison between PWM and sigma-delta modulation in a
power factor correction system

Dallago 2002

[35] A sigma-delta modulator as an A/D converter Plassche 1978

[36] Comparison of vector sigma-delta modulation and space-
vector PWM

Nieznanski 2000

In [34], the performance of sigma-delta modulator (Σ∆M) and pulse-width

modulator (PWM) in single-phase AC / DC boost power factor correction (PFC) system

is compared. Sigma-delta modulators have irregular switching frequency, and they can

avoid concentration of emissions at discrete frequencies, which is a common problem in

pulse-width modulation. Also sigma-delta modulators provide high noise rejection and

high linearity between the modulation signal and duty cycle through internal integrator

when compared to PWM schemes. With a measured line current spectrum, a sigma-delta

modulator provided much less distortion than a pulse-width modulator. Also sigma-delta

modulator showed lower conducted emission at the average switching frequency than

pulse-width modulation. Only the encoder or modulator part of the sigma-delta

modulation is considered in the study.

20

A first-order ∆Σ ADC is demonstrated in [35]. It uses bipolar technology for the

analog circuits and MOS technology for the digital circuits. Bipolar technology was used

for the sigma-delta modulator, since the technology has advantages for input and

reference source circuits over MOS technology. The design includes an auto-zero circuit,

voltage-to-current converter, multi-input data acquisition system, and digital-to-analog

converter. The measured resolution is more than 16-bits with 1.8 × 2.9 mm2 and 2 × 3.2

mm2 chip and 27 mW power consumption. This paper shows that low-speed but high-

accuracy ADCs can be implemented with sigma-delta modulator that outperforms

integrating ADCs such as the dual-slope ADCs.

The third article in Table 3 shows that a modified vector sigma-delta modulator

(VΣ∆M) can replace a space-vector pulse-width modulation in the inverter control

applications. Vector sigma-delta modulators are regarded as a variation of pulse-density

modulation (PDM), and the original idea is modified to fit within power electronics

applications by eliminating direct polarity reversal and by reducing inverter switch loss.

Vector sigma-delta modulator performance is comparable or better than space-vector

pulse-width modulation in aggregate quality, total harmonic distortion, switching loss

factor, and switching frequency characteristics. Vector sigma-delta modulators are shown

to provide smooth fine-tuning by parameter adjustment, freedom from minimum pulse-

width problems, and relaxed hardware requirements since a timer is not required. The

article concentrates on the vector ∆Σ encoder since decoding is not required with inverter

applications [36].

21

These studies present specific design comparisons for particular (and different)

applications rather than a general comparison.

22

Chapter 2

ARCHITECTURAL COMPARISON OF SYSTEM-

ON-A-CHIP ADC WITH STATISTICALLY DEFINED

INPUT

This chapter provides an architectural performance comparison between Nyquist

rate sampling ADCs and oversampling ADCs. The comparison is performed by making a

linear approximation to the quantization stage of the converters and then using the

frequency domain analysis to compute the average statistical performance of the ADCs to

band-limited random inputs and additive broadband noise.

All the function blocks that the input signal goes through until it gets to the actual

data converter are defined as the analog front-end of ADC system, as shown in Figure 2.

Many ADC system implementations only include the ADC itself, ignoring auxiliary but

critical front-end functional blocks [37-45]. The analog front-end plays an important role

in conditioning the input signal and transferring it to an ADC. It can be a limiting factor

for ADC noise and bandwidth performance. Models and analysis for analog front-ends

are discussed in Appendix C.

23

Figure 2: Definition of front-end and ADC in ADC system

We are assuming a relatively wide-band input signal that is typically more severe

than most real-world signals. This is because real-world signals tend to only have signal

content well below the Nyquist rate. However, in the system-on-a-chip application we are

considering, input frequency content at or above the Nyquist rate is very likely due to

interference from the integrated digital and other components on the system. Thus

although stand-alone converters might perform better than the predicted signal-to-noise

ratio (SNR) in this analysis, system-on-a-chip converters will probably perform quite

close to the simulated results, and would not be adequately modeled with only low-

frequency inputs.

24

Another issue with frequency domain analysis is that the ∆Σ ADC has nonlinear

internal states. However, the nonlinearity of the ∆Σ ADC produces effects mainly in the

quantization noise band that are filtered out, rather than in the low-frequency signal band.

Thus the effect of neglecting nonlinearity in this analysis is small.

2.1 Architectural Comparison

In the following subsections, an architectural comparison of ADCs will be

presented by utilizing the analog front-end models and input signal models provided in

Appendix C. All the analog front-end components are modeled in frequency domain and

cascaded according to the front-end models shown in Figure 93 and Figure 94 in

Appendix C. There are four possible front-end configurations to be compared as

summarized in Table 4. Most of these set-ups are applied to both Nyquist sampling and

oversampling ADCs.

25

Table 4: Analog front-end configurations; o = use this element × = not use the
element

Configuration Buffer LPF SH ADC

Traditional ADC o o o o

Direct sample-and-hold ADC o × o o

Direct ADC o × × o

Converter constraint ADC × × × o

The input signal power P0 is normalized to 1 and a flat spectrum noise power N0

of 1×10-10 per front-end stage is chosen. The noise power is selected to produce 16-bits

equivalent output when only one input stage is used and nothing else affects the SNR.

Also the selected noise power turns out to be a good estimation of a real circuits’ input

noise, as demonstrated in Chapter 4. Each stage in the converter is assumed to add the

same amount of noise power Nt = N0 to the signal. This is analogous to each component

using similar circuits in the signal path, each with similarly-sized transistors having

similar current flow. The underlying assumption here is that ADC architectural

differences will not allow a significant difference in the amount of noise reduction

achieved through design optimization. The sample-and-hold capacitor is assumed to be C

= 0.1 nF, which will generate kT/C noise equal to about a half of Nt at T = 300 K.

26

The output signal and noise spectrum are obtained with numerical analysis to

produce SNR for each configuration. The SNR is obtained as a ratio of the signal power

in the desired band to all the noise power in dB. For oversampling, it is assumed that a

first-order anti-alias LPF provides enough attenuation to avoid signal aliasing when the

OSR is high enough (usually the OSR = 256 - 1024), and that a post digital signal

processing algorithm removes all remaining out-of-band noise through multirate signal

processing. The simulations are performed in frequency domain with frequency step

2×10-3 and frequency range [0, 2×102]. The signal and noise powers are obtained through

the extended and closed trapezoidal rule integration [46].

2.2 Analytic Comparison for Traditional Front-end

2.2.1 Band-limited Input Signal Model A

Using the strictly band-limited signal model A (Xin,A(f) given in the equation (34)

in Appendix C), the relationship of signal bandwidth to SNR can be explored for the

traditional ADC with buffer, anti-aliasing low-pass filter, and sample-and-hold, as

modeled in Figure 93 (Appendix C). A desired input signal bandwidth fM is normalized 1

for all the following simulations. All filter cut-off frequencies are set to the normalized

frequency 1. The resulting SNR is plotted in Figure 3. As long as the input signal is band-

limited to the designed signal band fM = 1, the order of the filter does not have much

effect on the signal-to-noise ratio. Slight differences with different filter order come from

27

the different attenuation of input signal power. The picked filter cut-off frequency 1

provides the almost optimal signal-to-noise ratio with the band-limited input, whose

bandwidth is less than 1. When the input signal bandwidth is larger than the designed

signal band fM, the filter order can make significant improvement in signal-to-noise ratio

by changing filter cut-off frequency. A three-dimensional plot of SNR as a function of

input signal bandwidth and filter cut-off frequency for sixth-order anti-alias LPF, shown

in Figure 4, demonstrates that less change in SNR occurs as signal bandwidth changes

when an optimal cut-off frequency is used rather than the normalized frequency 1.

Figure 3: Traditional ADC front-end SNR performance with input signal model A
versus input signal bandwidth

28

Figure 4: SNR plot as a function of signal bandwidth and filter cut-off frequency for
the 6th order LPF case (Notice that the SNR is essentially unchanged with signal

bandwidth if the optimal filter cutoff for wide-band input is used.)

The results in Figure 3 show that although band-limiting the input improves the

SNR of the Nyquist converters, the improvement is insufficient to overcome the

performance advantage of the oversampling converters (which also improve with signal

band limiting).

2.2.2 Flat Input Signal Model B

With the flat spectrum input signal model B (Xin,B(f) given in the equation (35) in

Appendix C), the traditional analog front-end given in Figure 93 in Appendix C produces

29

the SNR shown in Figure 5. The Nyquist sampling case shows that the presence of a first-

order buffer only increases the SNR slightly. An optimal cut-off frequency that gives the

maximum SNR for each LPF can be obtained from the figure. This optimum frequency is

quite low compared to the sampling rate. There is an apparent reduction in the

improvement of SNR with increased order of LPF, so that filter orders greater than

second-order add little to the converters’ performance.

Figure 5: Traditional ADC front-end SNR performance with input signal model B

The oversampling case shows that the order of the LPF does not affect the

performance; this suggests that no filter is needed with an oversampling converter. In fact

if a filter is used with an oversampling converter, then the cut-off frequency of the LPF

30

should be outside of the signal band to maximize the SNR. Therefore, a buffer as a low-

order LPF will be enough for oversampling to avoid additional noise that might come

from high-order filters.

It is clear from Figure 5 that the oversampling converter outperforms the best

Nyquist converter by approximately 20 dB, and outperforms the Nyquist converter with

second-order filter by 30 dB. Coupled with the elimination of the need for an anti-

aliasing filter, this performance advantage makes the oversampling converter a clear

favorite for applications where sensitivity is a priority.

In summary the oversampling converters maintain their 20 dB advantage over

Nyquist converters for most signal bandwidths, and actually achieve nearly 40 dB

improvement over the second order LPF Nyquist case when wide-band input signals are

applied.

2.3 Analytic Comparison for Analog Front-end with Direct

Sample-and-Hold

The analog front-end configuration with direct sample-and-hold consists of a

buffer, sample-and-hold, and ADC only, as shown in Figure 94 (Appendix C). As

discussed in the classic configuration case in the previous section, Nyquist sampling with

a higher-order anti-alias LPF cannot achieve anywhere near the performance of the

oversampling case. In the direct sample-and-hold front-end, the absence of an anti-alias

31

LPF causes more signal aliasing, so Nyquist converters suffer even more. One solution to

this is a cascade of similar buffer stages with cut-off frequency around fM.

2.3.1 Band-limited Input Signal Model A

The band-limited input signal Xin,A(f) is applied to the configuration and the

output SNR is plotted in Figure 6. Since the buffer is not designed for the rejection of

out-of-band signal, SNR degrades quickly as the input signal bandwidth goes beyond 1.

In summary, the band-limited input helps the Nyquist converters considerably when

signal content above fM is eliminated; however, the Nyquist converters still under

perform the oversampled converters by 20 dB even when the signal is band limited.

32

Figure 6: Direct sample-and-hold ADC front-end SNR performance with input
signal model A versus input signal bandwidth

2.3.2 Flat Input Signal Model B

Figure 7 shows the resulting SNR with the wideband input signal model B, using

a buffer cut-off frequency fixed at 0.7fM. Clearly a higher-order buffer can simulate the

effect of anti-alias LPF when it is designed as a filter with low cut-off frequency. Usually

a buffer is designed to provide a gain-bandwidth around 0.6fM - fM to ensure high-speed

operation [47]. In the oversampling case, the order of buffer does not contribute much to

the performance, and the buffer itself is not necessary since sample-and-hold works as a

LPF with a proper capacitance value. In summary, the oversampled converter

outperforms the Nyquist converters by around 30 dB, even with the buffer-based filters.

33

Figure 7: Direct sample-and-hold ADC front-end SNR performance with input
signal model B versus buffer cut-off frequency

2.3.3 Analog Front-end with Direct Conversion

Many contemporary ADCs do not have explicit anti-alias LPF and sample-and-

hold. This direct conversion configuration consists of a buffer and an ADC as shown in

Figure 94 in Appendix C.

The band-limited signal model A, Xin,A(f) is applied to input with a fixed buffer

cut-off frequency 0.7fM and the output SNR is given in Figure 8. The figure argues that

there is no need for any FE function block to get the maximum available SNR as long as

the input signal is strictly band-limited to fM. The strict band-limitedness assumption on

input signal is rather naive, and a filtering function is unavoidable in practice. Any non-

34

ideal filter attenuates some portion of in-band signal power and adds noise to the signal.

The available SNR performance of Nyquist sampling is better with direct conversion than

with direct sample-and-hold conversion for the input signal band less than fM, and it is

worse for the signal band greater than fM. As a matter of fact, the absence of sample-and-

hold would cause the Nyquist ADC output to become unreliable since a varying signal

applied directly to an ADC causes the conversion algorithm to fail in most cases (see

Appendix C.6 for an example). The actual ADC output error without a sample-and-hold

depends on the conversion algorithm. The oversampling performance is better than in the

direct sample-and-hold case since there are fewer blocks that add noise than direct

sample-and-hold.

Figure 8: Direct sample-and-hold ADC front-end SNR performance with input
signal model A versus input signal bandwidth

35

When the input signal model is Xin,B(f), the buffer is essential since there is no

way to attenuate out-of-band signal power. Without a filter function block to attenuate

out-of-band signal, there is a total signal aliasing, and the output SNR will be -∞. The

output SNR is given in Figure 9. Nyquist sampling performance is worse than the direct

sample-and-hold case due to the absence of sample-and-hold as a low-pass filter.

Oversampling configuration performance is better since less noise power is added in the

analog front-end.

Figure 9: Direct sample-and-hold ADC front-end SNR performance with input
signal model B versus buffer cut-off frequency

36

2.3.4 Summary

Of all the architectures explored so far, the oversampling converter with direct

connection to the signal is by far the best alternative for high sensitivity applications.

When the input can be assumed band-limited, Nyquist converters with just a sample-and-

hold input will perform to within 20 dB of the oversampling converter and, as such,

might be desirable if there are not the resources necessary for the digital signal processing

necessary for operation of the oversampling converters.

2.4 Converter-constrained ∆Σ Conversion

It is discussed in Appendix C that a first-order ∆Σ ADC has an extended filter

transfer characteristic which is similar to a LPF (shown in Figure 103 in Appendix C). A

second-order ∆Σ can be proven to have the same characteristics, except that the

asymptotic filter order is second order through the same analysis. The cut-off frequency

of the asymptotic ∆Σ LPF is fs,os/2π and the attenuation at fs,os is about -10 dB. Thus when

the oversampling ratio is high enough, the signal power that folds back, due to aliasing,

into [-fM, fM] will be 6 dB more attenuated by this filter. In this case, the oversampling

assumption does not hold since the interested frequency range is the sampling frequency,

not the signal bandwidth. The higher the order of ∆Σ ADC, the more attenuation is

available for the in-band and folded-back signal power. This means that ∆Σ ADCs can

provide a better SNR performance of the "no buffer" case in Figure 8 even when the

37

input is not band-limited and the buffer is not present. A simulation shows that fourth-

order noise shaping ∆Σ ADC can have 64 dB SNR without a buffer, taking advantage of

the inherent filtering characteristics.

2.5 Summary of Analog Front-end Performance Comparison

This section provides a summary of available SNR with various analog front-end

configurations. We will assume that the filter order of the traditional ADCs is always

fourth order and that the buffer for direct sample-and-hold and direct ADC cases is also

fourth order.

When the band-limited input signal model A, Xin,A(f) is applied, the output SNR

plot is given in Figure 10. We see that the band-limited signal boosts the SNR of the

traditional ADCs without LPFs by around 1 – 3 dB; however, they are still 20 – 30 dB

worse than any oversampling converter. We also see that the oversampling ∆Σ ADC is

still the best performer by slightly less than 30 dB.

38

Figure 10: All ADC analog front-end SNR performance with input signal model A
versus input signal bandwidth

With the wide-band input signal model B, Xin,B(f), the SNR plot of every

configuration is shown in Figure 11. Clearly any oversampled converter with a wide-

band input stage provides almost the same performance. It is also clear that even a well-

designed Nyquist converter will suffer approximately 30 dB sensitivity penalties.

Furthermore, the filters and buffers will need to have bandwidths of 1/10th of the

sampling frequency.

39

Figure 11: All ADC analog front-end SNR performance with input signal model B
versus filter or buffer cut-off frequency

According to the simulations, though oversampling ADCs need minimal signal

conditioning, the minimum first-order filtering is enough and more filtering actually

degrades signal quality. Much more rigorous filtering is necessary for Nyquist sampling,

and there is a trade-off between the filter noise and filter specification. Consequently,

oversampling ADCs with the simplest front-ends can have better signal-to-noise ratio

than Nyquist sampling ADCs with necessary analog front-ends in the perspective of a

statistically-defined input signal in frequency domain.

The relative SNR performances compared with the maximum available

performance of all cases when input signal model B with bandwidth fM is applied are

summarized in the Table 5.

40

Table 5: Relative SNR comparison of all cases with input signal model A, signal
bandwidth fM

Configuration SNR (dB)

Buffer, 4th-order LPF, sample-and-hold Nyquist sampling -26.7

Buffer, direct sample-and-hold Nyquist sampling -29.5

Buffer, direct converter Nyquist sampling -27.7

4th-order LPF, sample-and-hold oversampling -6.6

direct sample-and-hold oversampling -4.5

direct oversampling 0.00

41

Chapter 3

CODEC MODELING OF ADC AND DECODING

PERFORMANCE ANALYSIS

This chapter takes a time-domain analysis approach to model an ADC as an

encoder and decoder, or as a CODEC. While the discussion provided in the previous

chapter puts emphasis on the available performance of ADC by characterizing the analog

front-end, there is a limitation in the modeling of ∆Σ modulators as linear since they are

actually nonlinear. Though the linear approximation is good enough for general-purpose

analysis and tends to give a lower-bound pessimistic performance, the linearization of

quantization error forces ∆Σ modulators to be underestimated in their performance.

A perspective that an ADC can be modeled as a communications channel and

CODEC is presented in sections 3.1 and 3.2. A new proposed ∆Σ decoding scheme is

presented in section 3.2. To explore the maximum available performance of ∆Σ CODEC,

several decoding schemes, including the suggested algorithm, are compared in sections

3.3 - 3.5.

42

3.1 ADC Modeling as a Communication Channel

An ADC can be modeled as a general communication channel, and the channel

capacity C of it can be derived using information theory as discussed in Appendix D. For

an ADC input signal X⊂[0, 1] with mean µX=1/2 and variance σX
2, the output of ADC Yk

is given as (1). The quantization noise N is assumed to be Gaussian noise with a small

enough quantization step ∆, whose mean is N = 0 and variance is σN
2=∆2/12. Though Yk

and Nk take discrete values, let us ignore it for the time being. The input Xk takes an

analog value. Let us assume an ideal anti-alias LPF and sample-and-hold for ADCs. The

information capacity of a channel is given in (2), as discussed in the Appendix D. The

quantization step size ∆ and the number of quantization steps S∆ are in inverse relation.

(1): Yk = Xk + Nk,k =1,2,L,K

(2): C =
1

2
log2 1+

P

∆2 /12









It is notable that the information capacity of a channel is a function of signal

power and noise variance, which is equivalent to noise power. For both a flash type ADC

and a ∆Σ ADC, maximum signal power P is given as (3). With flash ADC, quantization

noise power σN
2=∆2/12 will be distributed over sampled spectrum as a white noise, and

the capacity of the channel will be given as (4).

43

(3): P =
1

2 2









2

(4): 







∆
+=

12/
1log

2
1

22
PC

With first-order ∆Σ ADC, the noise power can be obtained, as shown in (5), for a

large oversampling ratio M, through an approximation of a sinusoidal frequency

spectrum of the noise-shaping filter [11]. An ideal brick wall LPF is assumed for the

downsampling filter. The channel capacity of ∆Σ ADC then is given in (6). The channel

capacity is directly related to the number of bits available in the ADC as a

communication channel. The results are compatible with linear analysis of ∆Σ analysis,

as shown in Figure 12, where 9 dB per twice oversampling is available for the first-order

filter (see Figure 83 in Appendix B).

(5): σ ∆Σ
2 = σ N

2 | 2sin(2πf) |2
−1/ 2M

1/ 2M∫ =
π 2σ N

3M 3

(6): 







∆

+=







+=

∆Σ
∆Σ 22

3

222
361log

2
11log

2
1

πσ
PMPC

44

Figure 12: ∆Σ channel capacity as a function of oversampling ratio

3.2 ADC Encoding and Decoding

In most cases, an ADC input is an amplitude-modulated signal with a carrier. The

carrier can be just a DC level or a sinusoid with a carrier frequency for a lock-in mode

operation. Only DC amplitude input signal is treated in this research for simplicity. By

the nature of analog-to-digital conversion, this analog input is turned into a digital

representation, such as thermometer code, gray code, circular code, signed magnitude

code, one's complement code, two's complement code, offset binary code, etc. [15]. One

interesting thing to mention is that there are ADC internal digital representations that are

different from the final digital representation. The flash ADC internal representation is

the thermometer code, while the single-slope ADC uses a time-domain thermometer code.

45

A flash ADC internal representation goes through a decoder to generate a binary code,

which can be in any code representation, and a counter converts single-slope ADC

internal representation to the desired representation. An iterative algorithmic ADC has

rather a natural binary code oriented design since its internal and final representations are

same [11-13, 15, 17]. Usually, the final desired output is natural binary code, while it will

depend on the number system that the following digital signal process system has. The

entire process of A/D conversion can be modeled as encoding and decoding as shown in

Figure 13. If an ADC has an intermediate representation similar to the final output

representation, it can be thought of as a decoder-centered or top-down approach design.

Figure 13: Encoding and decoding of analog-to-digital conversion process

46

The first conversion from analog signal to internal digital representation is a lossy

conversion since infinitely accurate information in analog signal, excluding noise, is lost

and unrecoverable quantization error is introduced. In practice, there is a thermal noise

floor as a lower bound of noise at room temperature, and a conversion would be

effectively lossless if the quantization noise power added is less than the noise floor. The

second conversion from internal digital representation to final digital representation is

lossless with most Nyquist sampling ADCs, in the sense that the acquired information is

not lost during conversion. In practice, many of the second conversion processes have

error correction capacity to enhance conversion speed and linearity [11-13, 15].

A ∆Σ ADC has a digital stream output as an intermediate output format, which is

usually a 1-bit stream, and there are various downsampling filters and decoding

algorithms to convert the internal representation to the desired final format. Unlike

Nyquist sampling ADCs, the second conversion process is not necessarily lossless,

though the process occurs in the digital domain. Traditionally, downsampling filters have

been used as a decoder, and several nonlinear decoding algorithms have been devised to

attempt to find an optimal solution to the given ∆Σ output stream [31, 48-54].

Without noise in the input and noise added by the circuits, the output stream of a

∆Σ encoder is deterministic for a given input. Though the analog input is a real number, it

can be approximated and replaced with a rational number since digitization will discard

unconverted information, resulting in an integer output. With L-bits output stream, there

are 2L degree of freedom, or the number of code words, while only a portion of this

freedom is taken advantage of by the ∆Σ encoder [29]. Let us assume that the input is

47

distributed over [0, 1] and a reference value for 1-bit analog-to-digital decision is 1/2.

Using the nonlinear discrete ∆Σ system model discussed in Appendix B, the decoding

problem for the first-order noise shaping encoder with constant input x and oversampling

ratio L can be formulated as (7), where u is unknown internal state and y is observed

digital output stream. At time n=k-1, input x can be estimated by adding up equations

from n=0 to n=k-1 as given in (8). The bounds given in the equation are rather

pessimistic since the internal state u is not known at all. Using all the bounds throughout

the conversion period, a tighter bound for the estimated x can be obtained in (9). As a

good guess, the middle point of the bound can be suggested as the solution to the problem

as given in (10).

(7): u[n +1] = u[n]+ x − y[n],n = 0,1,2,LL −1

(8):
k

ny
x

k
ny k

n

k

n ∑∑ −

=

−

=
++

≤≤
+−

1

0

1

0
][1][1

(9):










 +

≤≤










 +− ∑∑ −

=

=

−

=

= k
ny

x
k

ny k

n

Lk

k

n

Lk

1

0

],1[

1

0

],1[

][1
min

][1
max

(10): 2/
][1

min
][1

max
1

0

],1[

1

0

],1[























 +

+










 +−

= ∑∑ −

=

=

−

=

= k
ny

k
ny

x
k

n

Lk

k

n

Lkest

48

More rigorous bounds can be found by incorporating comparator output of each

time step. When an output bit is high, the internal state is greater than the reference value;

therefore, the lower bound estimation can be given as in (11). In the same way, an upper

bound is found in (12) when the output bit is low. The estimation of input signal using

both bounds is given in (13).

(11): x ≥
y[n]

n= 0

k−1∑ +1/2 − u[0]

k
≥

y[n]
n= 0

k−1∑ −1/2

k

(12): x ≤
y[n]

n= 0

k−1∑ +1/2 − u[0]

k
≤

y[n]
n= 0

k−1∑ +1/2

k

(13): xest = max
k=[1,L]

−1/2 + y[n]
n= 0

k−1∑
k





 





 
+ min

k=[1,L]

1/2 + y[n]
n= 0

k−1∑
k





 





 













 /2

The decoding performance of the proposed algorithm will be compared in the

following sections. The solution is similar to that of the ''zoomer'' algorithm, in the sense

that it uses iterative bounds, but it does not assume any initial conditions on converter

internal state during derivation [28, 49]. Also it uses two-way bounds rather than one-

way bounds to get tighter bounds. The actual performance of the proposed algorithm is

dependent on the internal states. Figure 14 shows an example of the solution tracking

behavior of the lower and upper bound in the proposed algorithm. The input value to ∆Σ

49

ADC is π/7≈0.4488 as a random number, and the absolute error of each bound and the

final estimation from the input value are plotted. The operation of the nonlinear

maximum and minimum functions can be seen in the long periods of constant error.

During these periods, the bounds at individual iterations are worse than that for earlier

iterations.

Figure 14: The solution tracking behavior of the proposed algorithm

50

3.3 ∆Σ Nonlinear Decoding Algorithm Performance in Ideal

Circuits

A first-order ∆Σ modulator with non-ideality models shown in Figure 15 is used

to evaluate the performance of various decoding algorithms. The input range of the ADC

is [0, 1] and the ideal decision point for the 1-bit quantizer is 1/2 as defined in (14). All

the non-ideal factors are turned off for ideal circuit decoding performance measurement.

Figure 15: Error model of 1st-order 1-bit ∆Σ ADC

(14): q(x) =
1 x > 0.5

0 x ≤ 0.5





51

A sub-optimal filter [50] is selected to show the relative performance of linear

filters. Three nonlinear decoding algorithms for DC level acquisition - zoomer algorithm

[49], recursive [48], and the proposed scheme - are compared with assumptions that input

signal is stationary and noiseless, and that circuit is also noiseless and perfect. There is an

issue in zoomer algorithm that the unknown initial state degrades search results and

makes it worse than the simplest linear filter. As long as it is a decoder, rather than a filter,

it is possible to initialize internal state for every decoding. All nonlinear algorithms are

given initial conditions for the best performances. Not only the signal-to-noise ratio

(SNR) measurement, but also the decoding time could be of interest. Though the running

time of each algorithm is highly dependent on the specific hardware realization, each

decoding time is recorded and averaged for on-hand comparison [48, 49, 53, 54].

The zoomer, recursive, and proposed algorithm show better SNR than sub-

optimal linear filter by about 5.3 dB, 2.6 dB, and 10.2 dB, as shown in Figure 16. Every

decoding scheme has more than 9 dB gain per twice OSR. Also the average decoding

time of each algorithm is shown in Figure 17.

52

Figure 16: Signal-to-noise ratio performance of ideal ∆Σ decoding schemes

Figure 17: Average decoding time of each decoding scheme

53

3.4 ∆Σ Nonlinear Decoding Performance with Nonidealities

The ideal circuit is rather imaginary and provides no better than a mathematical

verification. There are inevitable circuit imperfections and unexpected disturbances, as

modeled in Figure 15. Stationary circuit imperfections, such as quantizer offset, leakage

in integration, and feedback gain, are considered first. Noise in signal and integrator are

equivalent in the first-order ∆Σ ADC. The comparator for a 1-bit ADC is prone to

decision errors. These random influences are also considered. The oversampling ratio

(OSR), the number of samples taken for filtering or decoding, is fixed to 256 for all of the

following simulations. The definition of OSR in this context is different from that used in

the signal processing.

3.4.1 Stationary Circuit Nonlinearity

The offset of quantizer can be modeled as (15), where coffset is the amount of

offset in comparator. The leaky integration is described by a difference equation (16),

where the degree of leakage is α. Also feedback error β caused by non-unity feedback

gain is modeled in the same equation.

(15): q(v) =
1 v > 0.5 + coffset

0 x ≤ 0.5 + coffset





54

(16): v[n + 1] = (1−α)v[n] + x[n] − (1− β)y[n]

Figure 18 is the simulation result of DC offset sweep of [-0.05, 0.05]. The

performance of the zoomer and the proposed algorithms degrade noticeably as DC offset

is increased while others remain same or fluctuate. As mentioned in [28, 49], DC offset in

quantizer is equivalent to offset in initial condition for zoomer, and it cannot be

compensated as long as the offset is not known. For the proposed algorithm, the obtained

upper and lower bounds become inaccurate as the offset increases, which results in a

rapid downturn of SNR.

Figure 18: Signal-to-noise ratio with DC offset coffset in comparator

55

The integration leakage α is swept in range of [0, 2×10-3] and the resulting SNR is

plotted in Figure 19. The performance degrades rapidly with all algorithms. It is

interesting to see that the linear filter and nonlinear algorithms are following similar

trajectories. Feedback error β causes almost the same effect on the decoding performance

for the same sweep range. Figure 20 shows SNR of decoding algorithms with feedback

error β sweep over [-1×10-3, 1×10-3].

Figure 19: Signal-to-noise ratio with integrator leakage α

56

Figure 20: Signal-to-noise ratio with feedback error β

3.4.2 Performance with Noise Sources

Two separate Gaussian random noise sequences were generated with standard

deviation σn and σq, and added to the converter input and the quantizer input. Unequal

weights that nonlinear algorithms put on the output streams of ∆Σ would make them

vulnerable to burst noise. Also robustness against time-varying signal would be

interesting to see if the algorithms are useful for the reconstruction of band-limited signal,

though it is also ignored here to concentrate on the DC-level acquisition application,

assuming that OSR is high enough and input is almost DC for sensor SoC application.

All algorithms are less sensitive to quantizer noise than signal noise as shown in

Figure 21 and Figure 22, which is natural since the ∆Σ decoder should have a low-pass

57

filtering characteristic, and quantization noise shaping reduces noise power in lower

frequency band. Also nonlinear algorithms fail faster than linear filters with extreme

noise in quantizer. The propose algorithm fails faster than other algorithms, and it is

reasonable that the bounds are calculated based on the ideal and fixed quantizer decision

point.

Figure 21: Signal-to-noise ratio with input signal noise

58

Figure 22: Signal-to-noise ratio with quantizer noise

3.5 Summary with Comprehensive Evaluation of ∆Σ Decoding

Algorithms

All non-ideal factors are taken into consideration to provide an estimate of real

circuit performance. Let us assume α = 1.0×10-3, β = 1.0×10-3, coffset = 2.0×10-3, σn =

5.0×10-6, and σq = 5.0×10-6. When OSR is 28 = 256, the estimated performance is

summarized in dB in Table 6. The loss of the linear filter experience is smaller than that

of nonlinear decoding schemes. Though the proposed algorithm suffers the worst loss of

sensitivity, it still shows the best decoding performance, followed by zoomer algorithm.

59

Table 6: Decoding performance with all non-ideal effects

Decoding algorithm Estimated SNR

Optimal 68.32

Zoomer 72.97

Recursive 71.04

Proposed 74.55

60

Chapter 4

CASE STUDY ON SENSOR ADC READOUT

SYSTEM

This chapter provides a case study for robust and flexible ADC designs. The

application is an integrated system-on-a-chip (SoC) sensor system with embedded photo

detector array input. The simplified system diagram is given in Figure 23.

Figure 23: Simplified sensor system diagram

61

Several considerations for integrated SoC sensor application are discussed in

section 4.1. Performance requirements of analog front-end for photo detector input is

analyzed in section 4.2. Two popular sensor readout ADCs with high sensitivity and

compactness are designed for comparison in sections 4.3 and 4.4. Theoretical

developments discussed in Chapter 2 and Chapter 3 are put to use for the comparison of

designed ADCs in section 4.5. Implemented ∆Σ ADC circuit testing results with

electrical, optical, and sensor system measurements will be given in sections 4.6 - 4.8.

All the designs presented in the chapter are based on AMI Semiconductor 1.5 µm

Si-CMOS process provided through MOSIS [8].

4.1 Embedded Photo Detector and Array

There are many configurations available for photo detectors with standard Si-

CMOS process, including BJT and PiN type detectors as shown in Figure 24 and Figure

25 [55].

62

Figure 24: Embedded PiN photo detector

Figure 25: Embedded BJT photo detector

The size, spacing, and position of the photo detector should be optimized for the

maximum sensitivity of embedded waveguide application. The sensitivity of a photo

diode pixel is the function of detector size and noise. For waveguide input signal, one

detector makes one pixel in an array, and an array of detectors makes a one-dimensional

image scanner to perceive an optical pattern in the waveguide, assuming coupling of laser

63

into photo detectors. The detector size should be large enough to collect sufficient light

compared with the dark noise of the detector and it should be small enough to generate

meaningful pattern information in the waveguide.

Figure 26 shows the photo and dark current measurement of embedded Si-CMOS

detector with evanescent field coupling, where the measured responsivity is 0.12 A/W at

632.8 nm [7]. “Rule of thumb” sensitivity available with the embedded detector is about

100 dB, which is equivalent to about 16-bits resolution.

Figure 26: Photo and dark current measurement with evanescent coupling to Si-
CMOS detector

64

The plots in Figure 27 and Figure 28 are time-domain responses of an embedded

Si-CMOS detector with 85 Hz and 1 kHz chopped HeNe laser. The photo detector

voltage biasing was 2.2 V, and the oscilloscope was terminated with 1 MΩ in the first

plot and 50 Ω load in the second plot [7]. The bandwidth of the detector is above 1 kHz

according to the plots.

Figure 27: Time domain response to 85 Hz-chopped signal

65

Figure 28: Time domain response to 1 kHz-chopped signal

With embedded optical waveguide and integrated Si-CMOS photo detector array,

the coupling of laser into the detectors will be butt coupling or evanescent field coupling.

Figure 29 and Figure 30 shows two side views of Si-CMOS circuits. Figure 29 has a

common ground made of metal contacts to the substrate. Figure 30 has diffusion area

used as an electrical common ground connection. The diffusion-based ground contact

produced a very different geometry for the waveguide. The actual coupling mechanism

will be highly dependent on the properties of integrated waveguide on the surface of the

Si-CMOS circuit. Important factors are the thickness and termination of waveguide, the

geometry of the Si-CMOS circuit itself, the uneven Si-CMOS chip surface, and the

position of metal and contacts, which will cause scattering of the laser.

66

Figure 29: Side view of Si-CMOS circuit A

Figure 30: Side view of Si-CMOS circuit B

4.2 Analog Front-end

The analog front-end designed for the embedded photo detector collects

photocurrent as input with voltage biasing to photo detector. The output of the analog

67

front-end should be current to be compatible with a designed analog-to-digital converter,

which will be discussed in the following sections.

As a buffer, an analog front-end should provide a constant biasing independent of

photo current input. A designed analog front-end buffer schematic diagram is given in

Figure 31. Figure 32 shows HSPICE [56] simulated biasing voltage to photo detector

when the input photo current is linearly increased. Also output current of the buffer is

plotted along the input current sweep in Figure 33.

All the simulations were performed with the recent 34 AMI Semiconductor 1.5

µm Si-CMOS transistor models obtained through MOSIS [8], and the MOSIS run

numbers are provided in Appendix E.

The buffer biasing monotonically decreases while it remains relatively constant in

the range of 0 - 1 µA. The change in biasing voltage can be ignored as long as the

supplied bias voltage is large enough for the photo detector to be turned on, according to

the photo detector characteristics given in the previous section.

68

Figure 31: Analog front-end buffer schematic diagram

Figure 32: Output current of analog front-end with DC sweep

69

Figure 33: Bias voltage output to detector with input DC sweep

Also the bandwidth and noise of the buffer are important characteristics, as shown

in Figure 34 and Figure 35. The buffer is biased through the photo detector, and the

frequency and noise responses are dependent on the input current level. Assuming input

photo current range is 0 – 1 µA, the circuit biasing point is set to 0.5 µA.

70

Figure 34: Analog front-end frequency response with varying input current

Figure 35: Analog front-end output equivalent noise with varying input current

71

The buffer bandwidth goes up to the order of 10 MHz at the biasing point, as

illustrated in Figure 36, which is high enough for sensor applications. Input equivalent

flat spectrum noise is also obtained, which is about 4×10-13 V/√Hz across the bandwidth

at the biasing, as shown in Figure 37. The equivalent voltage was calculated from the

output of an ideal trans-impedance amplifier attached to the buffer output.

Figure 36: Analog front-end frequency response

72

Figure 37: Analog front-end input equivalent noise

The simulated noise power is a noise floor for the buffer, where the circuit is not

sensitive any more to the signal power below it. The simulated analog front-end allows

more than 127 dB dynamic range with respect to the desired signal input range. The

dynamic range is equivalent to about 20.8-bits resolution with digital representation, as

shown in Figure 37.

4.3 ∆Σ ADC Design

The ∆Σ ADC has been an alternative way to implement ADC for instrumentation.

In this section a first-order continuous-time ∆Σ ADC design and simulation outputs will

be presented. Figure 38 shows ∆Σ converter function block diagram.

73

Figure 38: First-order ∆Σ ADC function block diagram

Detector and analog front-end specifications and characterization were provided

in the previous sections. A continuous-time integrator with a capacitor is used for the

first-order filtering in the feed-forward path. A clocked latch works as a quantizer and

unit-time delay. To maintain flexibility in the selection of decoding scheme, decoding

function block is provided by external post-processing function block. The circuit

schematic and layout of the design are provided in Figure 39 and Figure 40, and the

active circuit area is 144 × 105 µm2, excluding capacitor area.

74

Figure 39: First-order ∆Σ ADC circuit schematics

75

Figure 40: First-order ∆Σ ADC circuit layout

The design was extracted for spice simulation with parasitic capacitance. Figure

41 is an example ∆Σ ADC HSPICE simulation output with sinusoidal current input. A

plot in Figure 42 is ∆Σ oversampling converter output level acquisition HSPICE

simulation of input current sweep from 0 to 1 µA, using MOSIS Si-CMOS model run

number T0CU (see Appendix E). The decoding filter used in the plot is a first-order comb

filter.

76

Figure 41: First-order ∆Σ ADC extracted circuit simulation output

Figure 42: First-order ∆Σ ADC DC sweep output acquisition with comb filter

77

4.4 Single-slope ADC

Single-slope ADCs have been used for instrumentation system-on-a-chip designs

traditionally. This section provides a single-slope ADC design and simulation outputs.

Figure 43 shows a single-slop ADC function block diagram. To simplify the design, the

dotted function blocks are supported externally.

Figure 43: Single-slope ADC function block diagram

The designed single-slope ADC uses a trans-impedance amplifier to convert

current input to voltage. The required gain is 5 V / 1 µA = 5×106 V/A. Using the same

buffer given in earlier section, biasing circuit, amplifier stages, and sample-and-hold

78

compose analog front-end of the ADC as shown in the figure. The single-slope ADC

analog front-end AC characteristics are shown in Figure 44 and Figure 45.

Figure 44: Frequency response of single-slope ADC analog front-end

79

Figure 45: Single-slope ADC analog front-end input equivalent noise

According to Figure 44, the nominal gain of the front-end is about 125 dB with an

approximate signal bandwidth 10 kHz. As shown in Figure 45, the worst-case input

equivalent noise with respect to input signal level is about –119 dB, which is equivalent

to 19.5-bits resolution in digital representation. There is 8 dB more circuit noise involved

in the single-slope ADC analog front-end compared with the ∆Σ oversampling ADC

analog front-end.

The single-slope ADC design schematic and layout are shown in Figure 46 and

Figure 47. The active circuit takes 200 × 115 µm2, excluding capacitors. Analog front-

end, reference integrator, and comparator are included in the circuit, assuming counter

and control logic are provided externally.

80

Figure 46: Single-slope ADC circuit schematics

81

Figure 47: Single-slope ADC circuit layout

The layout was extracted with parasitic capacitance, and Figure 48 shows circuit

HSPICE simulation output with sinusoidal input current. A DC-level acquisition HSPICE

simulation of input current sweep from 0 to 1 µA is provided in Figure 49. The DC-

sweep acquisition plot shows variable gain error while the monotonicity of the output is

maintained. Transistor model MOSIS run number T0CU (see Appendix E) is used for

simulations.

82

Figure 48: Single-slope ADC extracted circuit HSPICE simulation output

Figure 49: Single-slope ADC DC sweep output

83

4.5 Conversion Performance Comparison

The theoretical results obtained in the previous chapters are used in this section to

provide comparison arguments between designed ADCs. After the architectural

comparison of ∆Σ ADC and single-slope ADC is discussed, the algorithmic decoding

performances of two ADCs are also compared. Several simulations with varying circuit

environments will be presented to demonstrate robustness of ADCs.

4.5.1 Architectural Comparison of ADCs

Let us assume that the input signal bandwidth is 10 Hz. Among several input

signal models proposed, the strictly band-limited signal model will be useful to

demonstrate the effect of signal band-limitedness. The analog front-ends discussed in

Appendix C are used for analog front-end models. All frequencies are normalized to the

unit frequency (see Appendix B.1.2 for frequency normalization) to simplify the numbers.

A first-order LPF with cut-off frequency 1 is used for ∆Σ ADC anti-alias LPF, and a

sixth-order Butterworth LPF with cut-off frequency 0.4 is used for single-slope ADC

anti-alias LPF. For the simplicity of comparison, both anti-alias LPFs are assumed to be

noiseless, which would favor single-slope ADC. Figure 50 and Figure 51 show available

SNR plots of ∆Σ ADC and single-slope ADC. Variables for the plots are input noise

power and input signal cut-off frequency of signal model A defined in Appendix C.

84

Figure 50: ∆Σ ADC available SNR

Figure 51: Single-slope ADC available SNR

85

The plot shows that single-slope ADC suffers extensive loss of SNR due to signal

aliasing, even with the sixth-order anti-alias LPF. The amplifier used in the analog front-

end of single-slope ADC adds more noise than that of ∆Σ ADC, and the available SNR

with optimistic input signal cut-off frequency is worse than ∆Σ ADC. ∆Σ ADC takes

advantage of full signal dynamic range by employing simpler analog front-end.

Oversampling of input signal enables effective signal aliasing rejection with the simple

first-order anti-alias LPF.

4.5.2 Algorithmic Comparison of ADCs

An oversampling ratio for a clocking frequency is equivalent to a given time

period of a Nyquist A/D conversion. Both ∆Σ ADC and single-slope ADC have

maximum available clocking frequency. The maximum operating clock frequency of

single-slope ADC is determined by the operation speed of counter, control logic, and flip-

flops, while that of ∆Σ ADC is mainly constrained by comparator and flip-flop in the

given designs. The single-slope ADC maximum frequency can be increased by adopting

higher-speed adder, sacrificing circuit area, design complexity, and power consumption.

For a given oversampling ratio, mean-squared error of data conversion output is a

measure of how much sensitivity an ADC has. Figure 52 shows a comparison between

ideal single-slope ADC sensitivity and ideal ∆Σ ADC sensitivity.

86

Figure 52: Decoding algorithmic comparison of ADCs

As discussed in the Appendix B, the performance of ∆Σ ADC is highly dependent

on the decoding algorithm. A square filter, which is equivalent to first-order comb filter,

or averaging filter, is basically a counter, and it performs worse than single-slope ADC

by 3dB. The comb filter and single-slope ADC performances are increased by 3dB per

twice oversampling. The advantage of ∆Σ ADC is that it has several alternative decoding

schemes with various algorithmic complexities. As shown in the plot, the optimal filter

[50] and the proposed algorithm (see Chapter 3) outperform single-slope ADC algorithms.

The gain of these two schemes increases by more than 9 dB per twice oversampling.

87

4.5.3 ADC Robustness Comparison with Simulations

The comparisons provided so far used performance measures such as SNR to see

how much sensitivity an ADC would produce. The robustness test of an ADC can be

demonstrated by changing circuit environments to observe how much the performance

and the designed characteristics maintained. Also circuit performance dependency on

wafer device model variations should be minimized to enhance yield per wafer.

Figure 53 shows the DC-level acquisition sweep of ∆Σ ADC with temperature

sweep from 0 º to 100 ºC. The plot shows highly linear analog-to-digital converted

outputs with temperature sweep. It is obvious that ∆Σ ADC is robust against temperature

variations.

Figure 53: ∆Σ ADC DC sweep with temperature sweep 0-100ºC

88

Figure 54 shows DC-level acquisition sweep of designed single-slope ADC with

temperature sweep of 20 – 30 ºC. The converted output shows a huge drift as temperature

increases, and it suggests that the given single-slope ADC design is highly temperature

dependent. To enhance temperature independency in single-slope ADC design, a

temperature compensation technique should be incorporated, though achieving high-gain,

low-noise, stable, and temperature stable circuits would give rise to a complicated

optimization problem.

Figure 54: Single-slope ADC DC sweep with temperature sweep 20 – 30 ºC

One device model is not enough to ensure that a circuit design would operate

properly with circuit fabrication. Wafer to wafer variations should be taken into account

89

for a design to be robust and reliable. A set of recent AMI Semiconductor 1.5 µm Si-

CMOS process transistor models were obtained through MOSIS [8], and the given ADC

designs were simulated with each model. Figure 55 and Figure 56 show DC-level

acquisition sweep of ∆Σ ADC and single-slope ADC with 34 recent Si-CMOS transistor

models. While ∆Σ ADC shows model invariant DC-level acquisition performance,

single-slope ADC performance depends on transistor model extensively. Both

temperature and model dependency of single-slope ADC comes from trans-impedance

amplifier characteristics. Simulation result suggests that the amplifier should be designed

carefully and the biasing of amplifiers should be intelligent.

Figure 55: ∆Σ ADC DC-level acquisition sweep with 34 CMOS transistor models

90

Figure 56: Single-slope ADC DC-level acquisition sweep with 34 CMOS transistor

models

Another important issue in a real A/D conversion circuit is clock jitter. With a

varying signal, the maximum allowed clock jitter is given as (17) [15]. Using the

equation, the reduction in SNR due to the clock jitter can be obtained as (18) [15]. The

reduction in Nyquist ADC SNR with clock jitter is plotted in Figure 57.

(17): ∆tmax =
2−n

πf in

(18):
2log2

])/62[1log(02.6 TSNR
n

reduction
∆+

×=
π

91

Figure 57: Nyquist ADC SNR degradation with clock jitter

The effects of clock jitter in ∆Σ ADC have been analyzed in several studies, and

the solution depends on the definition of jitter and the form of ∆Σ converter [57-59]. To

get statistical analysis, a randomized clock jitter is generated and given to a simulation

clock input, whose duty cycle is 0.25. An example of randomly generated clock jitter eye

diagram is shown in Figure 58. In the eye diagram, the random numbers have Gaussian

distribution with zero mean and standard deviation σ = 2×10-2.

92

Figure 58: Randomly generated clock jitter example

For a generated Gaussian random number with zero mean and standard deviation

σ, the amount of jitter was obtained by multiplying the generated random number by

clock period. For example, a random number x = 2×10-2 is generated with given σ and

the clock period is T = 1×10-6, which is f = 1 MHz in frequency. Then the amount of jitter

given to simulation is xT = 2×10-8. Every fall and rise edge of each clock is jittered

randomly and independently in this way. For each given standard deviation σ, 20 sets of

randomly jittered clocks were supplied to DC-level acquisition sweep simulations to get

statistical data. The simulation clock period was 0.5 µsec and each simulation was 280

clock cycles long. Each output was filtered with a sinc filter to estimate input value. For

each σ, mean-squared error was obtained and Figure 59 shows the simulation output. The

93

range of output is [0, 28-1=255] for the plots. The 8-bits resolution Nyquist sampling

ADC mean-squared error (MSE) plot with clock jitter is also given in the figure for

comparison. The figure shows that ∆Σ ADC is less affected by jitter, and the converter

resolution is not degraded in the given RMS jitter noise range since MSE remains below

0 dB. There will be a rapid performance degradation with ∆Σ ADC when a greater jitter

noise is applied [57, 58].

Figure 59: ∆Σ ADC available SNR with jitter noise

94

4.6 Sensor System-on-a-Chip Fabrication and Integration

A SoC with embedded Si-CMOS photo detector arrays and integrated mixed

signal processing system was fabricated with AMI Semiconductor 1.5 µm standard Si-

CMOS process through MOSIS, as shown in Figure 60.

Figure 60: Fabricated chip photo

The chip size is 4.6 × 4.7 mm2 and it has several variations of detector arrays such

as PiN and BJT photo detectors. Data converters included in the chip are 8 parallel ∆Σ

ADCs. Several configurations for photo detectors were designed on the chip, and the

photo detector pixel size is 8 × 8 µm2. Each array has 24 or 48 photo detectors and the

95

width of the array is about 192 µm. Each photo detector has its own analog front-end

with a switch to turn it on and off. The addressing of the photo detector can be described

as shown in Figure 61, where a group of 8 photo detectors are connected to 8 parallel

analog-to-digital converters with 8 parallel electrical switches.

Figure 61: Photo detector array addressing diagram

Optical interferometric waveguides were integrated using SiO2/Si3N4/SiO2 with

PECVD on the Si-CMOS circuit, as shown in Figure 62. Figure 63 shows the coupling of

external laser into the waveguide. Sensing arm of waveguide is patterned with

Hexafluoroisopropanol (HFIP). With several selected materials and knowledge-based

96

pattern recognition algorithm, this interferometric waveguides and the circuit can be a

sensor system for aqueous and gaseous materials.

Figure 62: Integrated Mech Zender interferometric waveguides

97

Figure 63: Laser coupling into integrated waveguide

4.7 ∆Σ ADC Sensitivity Measurement

The fabricated chip can take an electrical current input instead of detector current

input through the selection switches. A clock signal is generated with Tektronix data

pattern generator DG2020A [60], and the output data is collected by National Instrument

PCI-DIO-32HS data acquisition unit [61]. All the circuit-biasing voltages and currents

are supplied by Keithley 236 source-measure unit [62]. Also electrical current input is

controlled by two separate source-measure units. Beginning at 0.1 µA, differential

currents are added to input. The collected output through first-order comb filtering is

shown in Figure 64.

98

Figure 64: ∆Σ ADC sensitivity measurement with electrical input

The measurements are taken 10 times per input level, and the averaged input and

standard deviation are plotted in the figure. According to plot, the fabricated ∆Σ ADC

circuit is able to sense current down to the order of 10 pA against noise. The noise power

is inferred through standard deviation, assuming the noise is Gaussian. The noise is not

necessarily circuit noise since the accuracy of source-measure unit is ±(0.21 %+20 pA) at

100 nA, which is equivalent to ±230 pA. The measured sensitivity is better than reported

current input sensor array applications [63].

Since the actual signal reaches the analog front-end through the photo detector,

optical sensitivity measurement would provide the actual sensor system sensitivity. Laser

attenuated through optical attenuator was coupled into single mode optical fiber, and then

focused onto a photo detector. The optical power came out of the single mode fiber was

99

measured with Newport 1835-C calibrated optical power meter [64]. The collected data

was filtered through first-order comb filter and the result is plotted in Figure 65.

Figure 65: ∆Σ ADC sensitivity measurement with optical input

The plot shows that the fabricated data converter circuit can detect less than 10

nW laser input to detector. One thing to be mentioned is that not all optical power is

actually coupled into photo detector from optical fiber since it is coupled through air.

According to the derived standard deviation, the plot suggests that ∆Σ ADC sensor

system would be able to sense down to 100 pW laser power.

100

4.8 ∆Σ ADC Sensor System Measurement

A complete SoC sensor system requires the integration of various sophisticated

optical components such as edge-emitting laser, interferometric waveguide, etc. Not only

does each component require cutting-edge technology, but also the components

integration itself requires challenging processes. A demonstration of sensor SoC was

performed with the fabricated chip and the integrated interferometric waveguide. The

sensor system testing set up diagram is shown in Figure 66.

Figure 66: Vapor sensor system block diagram

101

The waveguide integrated chip was placed in a sealed chamber, and HeNe laser

was coupled with lens into the waveguide. The optical alignment was achieved through

microscope and 3-dimensional stage. Precise concentrations and flow rates of volatile

analyte chemicals were delivered to the test chamber with nitrogen gas carrier stream,

which is vapor in this case. The circuit output and relative humidity was collected by a

data processing unit. With the given set up, vapor was turned on and off at 20 minutes

and 75 minutes from the beginning of experiment, and the processed data is plotted in

Figure 67. In the plot, the explicit changes of output are observed with slow varying noise,

which can come from laser drift, thermal expansion of metal stage, epoxy and FR4 board

responses to vapor, and low-frequency circuit noise, etc..

Figure 67: Vapor sensor system measurement

102

4.9 Summary of Case Study

The sensor SoC integration requires optical components, such as waveguide, laser,

and photo detector. Integration of these components requires specialized know-how and

considerations to be compatible with each other. The comparison of designed ADCs

shows that there are more benefits with ∆Σ ADC than with single-slope ADC in circuit

area, robustness, and sensitivity. The fabricated ∆Σ ADC was tested for sensitivity, and it

proved a vapor sensor SoC successfully with integrated interferometric waveguide.

103

Chapter 5

CONCLUSION

5.1 Future Research

As shown in the sensor system demonstration in Chapter 4, a fully integrated

sensor SoC could be attained if a laser, such as an edge-emitting laser, were integrated on

the chip. It will remove all mechanical noises involved in the testing set up, while the

noise of integrated laser would remain an issue to go over. A laser driver that biases the

laser also contributes noise to the laser. The laser and driver noise modeling will reveal

whether 1/f noise of light source can be ignored, or whether flat spectrum noise of light

source is low enough to provide enough sensitivity [65]. In case 1/f noise is a major noise

source for the measurement and the flat noise spectrum is low enough that a better

sensitivity is available at higher sampling frequency, the lock-in operation of signal

source and ADC can be useful to achieve better sensitivity [66, 67].

There are various ways to implement the lock-in amplifier. The oscillator can be

implemented with analog or digital circuitry. The receiver demodulation of received

signal also can be performed in analog or digital domain. As a SoC, with light source

driver and receiver demodulator on the same system, full phase information is available.

104

Therefore, the phase-locking of transmitter and receiver can be established easily. While

the spectral purity of oscillation can be a problem, digital sources are useful to produce

almost infinite Q-factor oscillation as long as a good filtering is provided [68].

∆Σ modulation concept provides a wide variety of choices for lock-in mode

sensor operation. Band-pass ∆Σ [69, 70] ADC and high-pass ∆Σ [71, 72] ADCs enable a

very simple demodulation in digital domain. Also the signal transmitter section can be

implemented with high-fidelity ∆Σ DAC [73]. To achieve higher-frequency operation,

since the switched-capacitor technology has a speed limit, continuous-time filters should

be used for ∆Σ converters. Though radio frequency continuous-time filter experiences

more circuit noise than switched-capacitor technology, several breakthroughs, such as on-

chip integrated commercial level wireless transceivers and band-pass ∆Σ converters, have

been reported [68, 74].

5.2 Conclusion

This dissertation presented the frequency domain modeling of the analog front-

end of ADC and the time domain modeling of ADC as an encoder and decoder. The

analog front-end modeling of ADC provided the architectural comparison of various

ADC configurations, and it also proved the statistically worst-case available ADC

performance with stationary process assumption on input signal. The modeling produced

105

the quantitative analysis of analog front-ends, and it showed the architectural advantage

of oversampling data converters.

The perspectives that an ADC can be modeled as a communication channel or a

CODEC provided a general ADC model for both Nyquist sampling ADC and

oversampling noise-shaping ADC. Also a nonlinear decoding algorithm for ∆Σ ADC was

proposed, and the algorithm performance was demonstrated. The proposed method

outperformed known linear and nonlinear decoding schemes.

A decoder-centered ADC and an encoder-centered ADC were designed for SoC

application, and both were analyzed with the proposed theoretic models and tools. Also

the robustness and flexibility of the designs were examined. The ∆Σ ADC design was

fabricated with embedded photo detector arrays through the Si-CMOS process. The

electrical and optical sensitivities of the circuit were measured. Also a sensor SoC was

demonstrated with integrated interferometric waveguide.

106

Appendix A

DECODER-CENTERED ADC

A.1 Single-Slope Conversion

The single-slope serial ADC and dual-slope serial ADC can be selected as

comparison standards since they have the simplest concepts and implementations. In SoC

sensor applications, this type of converter might be used because of its small size and low

power consumption.

Single-slope ADCs search linearly from the lowest value to the highest value, or

vice versa, to determine which digital code would represent the input analog value best.

The single-slope ADCs have many different implementations and a basic functional

block diagram is shown in Figure 68. The integrator and counter are both set to zero

output as initial conditions. When an input value is sampled and held, the counter starts

and the integrator collects a small reference value until the integration output exceeds the

input value as shown in Figure 69. The counter output is the A/D converted value.

107

Figure 68: Single-slope ADC function block diagram

Figure 69: Single-slope ADC integrator output waveform

108

The single-slope converter is the simplest and the most intuitive ADC. The major

components are sample-and-hold, integrator, comparator, counter, and control logic. The

conversion is slow since it is a linear search process. The precision required of the

integrator, reference value, and comparator will dominate conversion speed and

sensitivity. The integration of reference would band-limit noise to reduce the effective

noise. The worst case conversion time is LT, where L=Vsupply/Vref is the number of

countable levels and T is the clock period [11, 12, 15, 17].

There are many examples of use of this design in the literature due to its

simplicity and compactness in spite of the limited resolution and slow conversion time.

Implementations are found in CCD or CMOS image sensors and multichannel parallel

converters. The reported resolutions are 8 - 12 bits with 10 - 128 µsec conversion time [9,

37, 41]. Table 7 summarizes single-slope ADC implementation examples.

Table 7: Single-slope ADC implementation examples

Resolution (bits) Conversion Time (µsec) Application

12 10 16 Channel Parallel ADC [9]

8 128 32 by 24 pixels CCD [41]

8 16.3 128 by 128 pixels CMOS [37]

109

A.2 Dual-Slope Conversion

The concept of dual-slope conversion is identical to single-slope conversion,

except that it uses upward and downward slope at the same time to reduce the effect of

nonlinearity and inaccuracy of the slope. Figure 70 shows the functional block diagram of

dual-slope converter and Figure 71 shows the integrator output waveforms of dual-slope

converter.

Figure 70: Dual-slope ADC function block diagram

110

Figure 71: Dual-slope ADC integrator output waveform

After the input value is sampled and held, the integrator output is set to Vgnd to

initialize it. Then Vin is integrated for Nref clock cycles, after which, the counter is reset to

0, and -Vref is applied to integrator input instead of Vin. The integration of -Vref continues

until integrator output reaches Vgnd, while the counter is counting clock cycles. The input

Vin estimation can be found from the counter output Nout, as in (19) [11-13, 15, 17].

(19): Vin =
Nout

Nref

Vref

111

It has been shown that the analog integration inherent in the slope integration

conversion process reduces the effect of noise. The major source of conversion error in

dual-slope ADC is the offset error in the integrator, and there are several algorithms to

reduce or cancel the offset error [75, 76].

Dual-slope conversion is widely adopted for the precise instrumentation

applications. The literature contains examples demonstrating 12 - 16 bits resolution and a

variety of conversion times depending mainly on the IC fabrication process chosen [10,

42, 77, 78]. A summary of implementation examples is shown in Table 8.

Table 8: Dual-slope ADC implementation examples

Resolution (bits) Conversion Time Application

12 50 µsec Medical Instrumentation [10]

12 0.41 µsec Micro-instrumentation [42]

14 15 µsec A/D and D/A Calibration [77]

16 2.5 µsec Time-to-digital Converter [78]

112

A.3 Iterative Algorithmic Conversion

The iterative algorithmic ADC uses a binary search process to determine a digital

code that best represents analog input value. It has been used to implement ADC since

the 1960's, and partial and full integrations were completed in 1970's. It is the most time-

efficient algorithm after the flash type converters [79-82].

A functional block diagram of an iterative algorithmic ADC is shown in Figure 72.

Initially, the input voltage Vin is sampled and held for the comparator, which will

generate a comparison result with Vref. The error between the sampled value and the

comparator output is doubled and sampled for the next iterative operation cycle.

Figure 72: Iterative algorithmic ADC function block diagram

113

With this scheme, a small error in the earlier cycle propagates with multiplication

through the cycles and causes error consequently. Error is caused by the mismatch of

passive components such as capacitors, the offset of comparator and multiplier, and also

by the inaccuracy of multiplication, subtraction, and sample-and-hold circuit.

The iterative algorithm conversion shares the same concept with pipelined

algorithmic ADCs and successive approximation ADCs. The pipelined ADC is an

unfolded version of iterative algorithm conversion in time. It is appropriate for a higher-

speed application. The successive approximation ADC does not need multiplication nor

subtraction, and it requires longer conversion time and an accurate DAC [11, 12, 15, 17].

Because of the large area of the pipelined and successive approximation converters these

are not considered for the current small area SoC sensor application.

The implementations of iterative algorithm conversion in the literature show 9 –

14-bits resolutions with various sampling rates depending on the process feature size. In

many cases, major concern was to take care of the mismatch problems to get higher

resolution [38-40, 83]. There has been intensive research to enhance the resolution of

iterative algorithmic ADC through self calibration and dynamic element matching [84,

85]. Generally speaking, the conversion speed of this type of converters is faster than the

linear algorithms such as single and dual-slope converters, and the resolution is lower that

that of dual-slope converter. A summary of implementation examples is shown in Table 9.

114

Table 9: Iterative algorithm ADC implementation examples

Ref. Resolution
(bits)

Sampling
Rate

Area Power Process

[83] 12 8 kHz 1.55 mm2 17 mW 5 µm CMOS

[39] 10 40 MHz 3.99 mm2 85 mW 0.8 µm CMOS

[40] 9 5 MHz 5.48 mm2 180 mW 3 µm CMOS

[38] 14 10 MHz 19 mm2 219 mW 0.8 µm CMOS

115

Appendix B

∆Σ ENCODER-CENTERED ADC

B.1 ∆Σ Encoder

The ∆Σ CODEC is used because it has a quantization noise shaping property that

enables highly accurate low-speed converters in conjunction with oversampling and

digital signal processing. Noise shaping is a technique to relocate quantization noise

power to a disposable (high) frequency band to increase converted SNR in the signal

band. Oversampling is a concept that uses a higher sampling rate than the necessary

Nyquist rate to enable a digital filter to enhance the SNR of an ADC by removing high

frequency out of signal band noise such as relocated noise due to noise shaping [13, 15,

17, 26, 29].

The origin of the ∆Σ modulation concept goes back to 1950's and the

development of the ∆Σ has gone through several innovations [22, 26, 86-89]. One of the

earlier forms of ∆Σ conversion can be found with delta modulation, an encoding scheme

for communication channel that uses oversampling and differential encoding by a single

116

quantization step as shown in Figure 73. It has been shown that this method suffers from

slope overloading and granular noise effects as shown in Figure 74 [90].

Figure 73: Delta modulation signal flow diagram

117

Figure 74: Delta modulation output waveform

B.1.1 Quantization Noise Models

The quantization noise spectrum can be shown to be approximately flat for high-

resolution converters. The root-mean-squared (RMS) value of quantization noise is

qrms=∆/√12, where ∆ is a quantization step size of ADC. All of the quantization noise

power will be mapped on the entire spectrum [-fs/2, fs/2] when a signal is sampled with

the sampling frequency fs. The power spectral density of the sampled quantization noise

is given in (20).

(20): Q(f) =
qrms

2

f s

118

There are several assumptions inherent in (20). It assumes the signal is random

and uniformly distributed, that there are enough levels of quantization to prevent

saturation, and that the quantization step size ∆ is small. Examples of quantization error

of sinusoidal wave with different number of quantization levels in time and frequency

domain are given in Figure 75 and Figure 76. A rigorous mathematical analysis without

any assumptions on noise also verifies that the approximation is good enough for many

cases [26, 91-93].

Figure 75: Quantization error in time domain with different quantization levels

119

Figure 76: Quantization error in frequency domain with different quantization

levels

B.1.2 Oversampling

A frequency response of a system or a power spectral density of a signal can be

normalized to an arbitrary frequency for a fair comparison between the systems or the

signals. The normalization can be done to a frequency fN or to a unit frequency 1. The

unit frequency will be more intuitive than the fN in many cases since it reduces a variable

in the expressions and plots, as shown in Figure 77. For a continuous-time signal band-

limited to fM, the sampling frequency fs must satisfy fs≥2fM for a lossless reconstruction

of original signal according to the Nyquist theorem. As far as the sampled data keeps

sampling period information, it remains in sampled frequency domain. If sampling time

information is removed, sampled sequence can be aligned to unit time, therefore the

120

frequency of signal is normalized to discrete-time frequency as shown in Figure 78 [94,

95].

Figure 77: Normalized frequency concept diagram

121

Figure 78: Sampled frequency concept diagram

Let's assume an ideal ADC that has a fixed number of quantization levels and

does not have a conversion speed limit. Further, assume the input signal of interest is

strictly band-limited to fM and Nyquist sampling frequency is given as fN=2fM. If the

signal is sampled at the Nyquist rate then the noise will be as in (20), however if a higher

sampling rate is used then, by (20), the quantization noise power spectral density will be

reduced by 1/2 (3dB) every time the sampling frequency is doubled, as a result the in-

band signal-to-quantization noise ratio is increased by 3dB every time the sampling

frequency is doubled, as long as the out-of-band noise power is later removed by digital

filtering, as shown in Figure 79.

122

Figure 79: Oversampling concept diagram

B.1.3 ∆Σ Encoding Analysis

A block diagram of the first-order ∆Σ noise shaping converter is shown in Figure

80. The '∆' comes from the negative feedback of the output and the 'Σ' comes from the

inner integrator. Both Σ∆ and ∆Σ are commonly used at the same time in the literature

[26, 29]. It differs from the delta modulator mainly in the placement of the integrator. The

location of the integrator in the analog domain before the quantizer makes for a simple

encoder implementation.

123

Figure 80: Block diagram of the first order ∆Σ ADC

The output y[n] can be solved as (21) in discrete-time domain and as (22) in z-

domain. The quantization noise shaping appears in the difference term q[n]-q[n-1] in (22),

which is a first-order high-pass filter in the frequency domain. If the quantization noise

spectrum is flat, (as is true for random input and high resolution) then the output

quantization noise will have the same spectrum as the filter frequency response. If more

integrators are used, an N-th order noise shaping filter will result as in (23). The

quantization noise shaping spectrum plots with the filter order N=1, 2, 3 are shown

normalized in Figure 81.

(21): y[n] = x[n −1]+ q[n]− q[n −1]

124

(22):)()1()()(11 zQzzXzzY −− −+=

(23):)()1()()(11 zQzzXzzY N−− −+=

Figure 81: Shaped quantization noise spectra with noise shaping filter order N=1,2,3

The actual quantization noise spectrum and shaped quantization noise spectrum

are highly dependent on the input signal characteristics. A simulation of a random input

signal to the first-order ∆Σ modulator generates the shaped noise spectrum as shown in

Figure 82. This is somewhat like the theoretically estimated spectrum, although the

limited sample size and random nature of the signal causes fluctuations of the spectrum.

125

Figure 82: Shaped quantization noise spectrum with first-order ∆Σ modulator and
random input

The noise power after ideal filtering of all signal above the Nyquist frequency and

downsampling can be estimated as in (24), where N is the order of noise shaping and M

is the oversampling ratio (OSR). Then we can now calculate the dynamic range of the

ADC which is defined as the maximum signal power over the total noise power. The

result is given in (25). The estimated SNR's of 1-bit quantization noise-shaping filter of

order N=1, 2, 3 are plotted (using (25) to calculate SNR=DR) in Figure 83. The effective

number of bits can be obtained by using the dynamic range of a Nyquist ADC (26), and

solving for the number of bits B as shown in (27) [11].

126

(24): Psignal ≅
π 2N

2N +1











1
M 2N +1









∆2

12

(25): 12
2

2 12
2
3][+

∆Σ
+

= N
N MNDR

π

(26): 122 23][−×= B
NyquistDR

(27):
02.6

76.1][−
= dBDR

B

Figure 83: SNR versus oversampling ratio with noise sampling filter order N=1,2,3

127

To see how effective noise shaping is, consider a comparison between a 1-bit

quantizer and a 1-bit noise-shaping converter. A 85-taps FIR Hanning window [94] is

used to remove frequency content above Nyquist frequency for both converters. The

results are shown in Figure 84 and Figure 85. The noise-shaping converter output, once

filtered, is a much better reconstruction of the original signal, whereas the 1-bit quantizer

output shows severe distortion due to quantization noise.

Figure 84: Signal reconstruction with 1-bit quantizer

128

Figure 85: Signal reconstruction with 1-bit noise shaping quantizer

B.1.4 Implementation Examples

The ∆Σ encoder implementations have high degree of freedom in the order of

noise-shaping filter, the resolution of quantizer, and the decimation filter. Some

implementations have specific target applications such as integrated service digital

network (ISDN) transceiver, hearing aid, and compact disk (CD) quality voice signal

processing, while others implement the stand-alone ∆Σ ADCs. Various ∆Σ converters

reported in the literature have 14 - 18 bits resolutions with 24 kHz - 12.5 MHz output

rates as given in Table 10 [96-101].

129

Table 10: ∆Σ ADC implementation examples

Ref. Bit Res. Output Rate Order Quantization Process

[96] 13 80 kHz 3 1 1.5 µm CMOS

[97] 18 48 kHz 4 4 2.4 µm BiCMOS

[98] 16 24 kHz 3 1 2 µm CMOS

[99] 14 80 kHz 2 1 1.75 µm CMOS

[100] 12 12.5 MHz 3 4 0.65 µm CMOS

[101] 12 1.92 MHz 2 6 0.18 µm CMOS

B.1.5 ∆Σ Encoding Issues

In Figure 80, there are both a quantizer (ADC) and a digital-to-analog converter

(DAC). These can be 1-bit or multi-bit converters and the ∆Σ ADC will still operate. One

of the advantages of a 1-bit based ∆Σ converter is that it does not suffer from ADC or

DAC nonlinearity issues since 1-bit ADC and DAC cannot exhibit nonlinear behavior.

Another choice in the converter architecture is the order of the integration. First-

order ∆Σ modulators are easy to fabricate since they are less susceptible to the passive

component matching errors and nonlinearity issues.

130

∆Σ modulators are seen to suffer from sub-signal frequency tone creation as

shown in Figure 86 and DC input dependent conversion error as shown in Figure 87. Full

nonlinear modeling of the modulator is necessary to explain these phenomena.

Figure 86: Tones excited with first order 1-bit noise shaping ADC

131

Figure 87: DC error pattern of first order ∆Σ ADC

As noted earlier, the dynamic range of ∆Σ ADC is determined in part by the OSR

and the downsampling filter. This can allow flexible converter designs that can change

their run-time operation mode, by changing OSR and downsampling scheme. The SNR

of the converter can be adaptively updated to control the conversion accuracy and circuit

power consumption. It adds more flexibility for implementations [11, 26, 102, 103].

By exchanging low-pass signal band and disposable high-pass noise band, a band-

pass ∆Σ converter can be designed with an appropriate noise-shaping filter, and it is

attractive to communications systems [26, 104-106]. Also a high-pass architecture is

beginning to be explored for direct conversion communication applications [71, 72, 107-

109].

132

A high-order ∆Σ architecture converter might suffer from the instability even with

a specific range of dc input. A stabilized high-order noise-shaping architecture can be

obtained with several design techniques [86, 110-112]. A complete stability analysis of

∆Σ conversion architecture is under development. There are several approximate and

heuristic stability analysis techniques such as linear models, root locus, and describing

function method [26, 29, 113, 114].

The concept of the shaping of quantization noise, the feedback of the quantization

error, and the modulation of the input signal have been extended to the variety of signal

processing schemes that mix analog and digital signal representations. Various steps such

as poly-phase ∆Σ ADC, time-interleaved ∆Σ ADC, and space-time ∆Σ ADC have been

taken in this direction [115-121].

B.2 ∆Σ Decoding

The performance of ∆Σ conversion is highly dependent on the decimation filter or

decoding scheme. Linear filters have been proposed for high-speed downsampling. These

filters are based on a linear approximation of the modulator model and the resulting

quantization noise. Most of these filters have been designed in the frequency domain.

Considering the nonlinear nature of the ∆Σ converter, several nonlinear decoding

algorithms have been devised by using time-domain observation of the modulator. The

133

time-domain approach uses the nonlinear state space system modeling and estimation of

encoder internal states.

B.2.1 Linear Decimation Filters

The decimation of the modulated stream has been a speed bottleneck for high-

speed ∆Σ ADCs. The comb filter has been a frequently used approach for the first stages

of decimation filtering since it can be implemented only with addition or subtraction

making it very fast, and it can be simplified to yield a compact system using (28) as

shown in Figure 88 [51, 122].

(28): D(z) =
1
N

z−i

i= 0

N−1

∑










k

=
1

N k
×

1
(1− z−1)k

× (1− z−N)k

134

Figure 88: Simplified decimation filter block diagram

The difference blocks in the diagram runs have N times slower since it comes

after N-bit downsampling. The accumulation block must be as fast as the sampling

frequency. A group of carry save adders and a 2-bits per 1-bit representation have been

proposed for the high-speed decimation of ∆Σ output [123, 124]. The accumulation block

could overflow due to the nature of the operation and the limited word length of

accumulator. It has been shown that the filter will be operational in spite of the overflow,

as long as the arithmetic is modular [52].

In the way of finding optimum filters for ∆Σ modulator, a sub-optimal filter based

on the spectral analysis of quantization noise was proposed as given in (29) [50]. This

filter has been used as a comparison standard for many nonlinear decoding algorithms

135

[49, 53]. It is interesting that the sub-optimal filter impulse response is similar to

triangular filter, which is the sinc2 filter, and the triangular filter is used as a comparison

standard in several studies [48]. The filtering performance of the sub-optimal filter and

sinc filters are compared in Figure 89 and Figure 90.

(29): hN ,opt =
6(n +1)(N − n)
N(N +1)(N + 2)

,0 ≤ n ≤ N −1

Figure 89: Impulse response of linear filters

136

Figure 90: Frequency response of linear filters

B.2.2 Nonlinear Modeling and Decoding of ∆Σ Converter

While switched-capacitor technology is used for the majority of ∆Σ converters,

continuous-time filters are useful for the implementation of ∆Σ converter variations such

as band-pass ∆Σ converters [69]. In most cases, continuous-time converter analysis is

conducted in the discrete-time domain with the approximate discrete transformations

replacing continuous-time transformations since this method benefits from the many

established discrete-time signal processing techniques. Discrete-time modeling of ∆Σ

encoders can adopt a general class of first-order linear discrete-time system models given

in (30) and (31). In the equation, u is state space variable, x is input, and y is output. Let's

137

assume that A, B, C, and D are time-invariant, which means that they are fixed and do

not change over time.

(30):
r
u [n +1] = A

r
u [n]+ B

r
x [n]

(31):][][][nxDnuCny rrr
+=

Considering scalar analog input and scalar digital output of an N-th order

interpolative ∆Σ modulator, the general first-order linear system equation can be turned

into a nonlinear ∆Σ converter model given in (32). The linear system output y[n] is

replaced with a nonlinear quantization function Q(c⋅u[n]) with the quantization error

defined in (33). The transition matrix A has integrator connectivity information and the

vector b has input signal distribution connectivity. The d maintains feedback connectivity

from the quantized output to internal states.

(32):
r
u [n +1] = A

r
u [n] + b

r
x [n]−

r
d Q(

r
c ⋅

r
u [n])

(33):])[(][][nucQnucne rrrr
⋅−⋅=

138

This model is useful for the modeling of general class ∆Σ converters. A large

number of high-order converters can be transformed to a diagonal form with this method.

This transformation enables identification and stability analysis of the system [125]. The

modeling method can be directly applied to several useful analyses on ∆Σ encoders. With

the second-order encoder given in Figure 91, internal states of the converter can be

plotted in state space for given input signals as shown in Figure 92. This geometric view

of converter is useful for stability analysis and design verification [126].

Figure 91: Second-order ∆Σ modulator signal flow diagram

139

Figure 92: Converter state space trajectories

To overcome linearly approximated decoder performance, several nonlinear

modeling techniques for ∆Σ converter have been proposed, such as rational cycle model

[53], auto-correlative state estimation [54], recursive stream analysis [48], Viterbi

decoding [127], and optimal internal decision estimation [49]. It is interesting to find a

study that proves that a democratic representation, which every bit output of ∆Σ encoder

has equivalent weight, i.e. linear finite impulse response filter, cannot exceed the

accuracy of non-democratic, or nonlinear algorithms [32, 127].

140

Appendix C

ANALOG FRONT-END MODELING

C.1 Analog Front-end Models

Figure 93 and Figure 94 illustrates several possible analog front-end models for

ADC use. The traditional Nyquist sampling and oversampling front-ends have anti-alias

low-pass filters and sample-and-hold before the ADC, as shown in Figure 93. The cut-off

frequency fc of the LPF should be less than the desired highest signal frequency fM to

avoid aliasing. For Nyquist sampling, the sampling frequency is fs=2fM and the sampling

frequency for oversampling is fs,os=2NfM , where N is the oversampling ratio. There are

several published implementation examples for Nyquist sampling whose analog front-end

have only sample-and-hold [37-40], or do not include both anti-alias LPF and sample-

and-hold [41, 42]. Also the majority of published noise-shaping oversampling converters

are not equipped with either the LPF or sample-and-hold [43-45]. These cases are

modeled in Figure 94.

141

Figure 93: Nyquist and oversampling with anti-alias LPF and sample-and-hold

Figure 94: Direct sample-and-hold and direct converter

142

C.2 Input Signal Models

The input signal characteristics can be defined in several ways. A band-limited

signal is a good model as a realistic input. Let's define the signal model A, Xin,A(f) with a

flat spectrum density Pin,A and a strict band-limit fin,A as expressed in (34). When the

bandwidth of the model is below Nyquist sampling frequency, it will show the effect of

signal and noise propagation without signal aliasing. Also this model can be used to

demonstrate the effect of signal aliasing on the performance of an ADC configuration,

when the cut-off frequency fin,A is greater than Nyquist sampling frequency. The abrupt

change of power density at fin,A makes the model rather ideal.

The other approach to model input signal is a signal with flat spectrum over the

infinite bandwidth. A signal model B, Xin,B(f) with a constant power density Pin,B is given

in (35). The model is useful to model any undesired higher-frequency signal than Nyquist

frequency that the designer didn’t take into account. Since the signal is not band-limited,

it can be regarded as the statistically worst case or a white noise signal.

(34): Xin,A =
Pin,A f ≤ f in,A

0 f > f in,A





(35): BinBin PfX ,,)(=

143

A pure random signal such as noise usually shows a flat spectrum and, as such, it

will have constant power density over infinite frequency range, and thus deliver infinite

power, which is totally unrealistic. A widely used way to imitate real signals is to filter

white noise. Thus the third approach to model input signals is a low-pass white noise.

This model produces a band-limited signal with the spectral continuity. Let's assume a

first-order LPF with a cut-off frequency fin,C. Then the definition of input signal spectrum

Xin,C(f) is given as in (36) with the spectrum density Pin,C at f=0 and the cut-off frequency

fin,C. Power spectral density plots of input signal models are provided in Figure 95.

(36): Xin,C (f) =
Pin,C

f 2 / f in,C
2 +1

144

Figure 95: Input signal models. A=abruptly band-limited white noise, B=white noise,
and C=first-order low-pass filtered white noise

C.3 Input Buffer

An input buffer can be an amplifier with gain or, often, a unity-gain buffer that

separates signal source and front-end. The input buffer will have a gain and a bandwidth,

and a first-order model low pass filter is an adequate model in most cases. When the

bandwidth is higher than the signal bandwidth fM, the buffer works as an all-pass filter for

signal, though it will filter noise in the higher-frequency region. If the gain-bandwidth is

lower than fM, or it is almost same as fM, the buffer will filter out high-frequency in-band

signal. Let's assume that the buffer transfer function model Hbf,k(f) has unity gain and

bandwidth fbf=fM as shown in (37), where k is the order of the buffer block to represent

145

the effect of cascaded buffers. The frequency responses of Butterworth filters and

cascaded first order buffers are compared in Figure 96. We see that cascaded buffers can

produce significant in band attenuation of signal.

(37): Hbf ,k (f) =
1

jf / fbf +1




 




 

k

Figure 96: Input buffer frequency responses

146

C.4 Models for Anti-alias LPF

Higher the order of anti-alias LPF used, the more attenuation is available at fM and

less signal power is attenuated in the signal band. The filters can be implemented with

switched capacitors, or with active resistor and capacitor circuits. The implementation of

high-order LPF is quite costly since it takes large area for parasitic components. Also the

precision of filter poles is subject to the statistical variation of fabrication process. The

noise induced by cascaded filter or switching of capacitors will also be increased with

high-order filters. For this study, we assume k-th order Butterworth filters used as anti-

alias LPFs. The magnitude of the frequency response Hlp,k(f) for such filters is as appears

in (38) with cut-off frequency flp,k.

(38): | Hlp,k (f) |=
1

(f / f lp,k)2k +1

As an example let us examine the effect of filtering on the signal-to-noise ratio of

a first-order filtered white noise input (previously called input model C). We assume the

initial SNR before filtering is 100 dB due to 10-10 DC noise power density with input

model C, and that the filter adds the same amount of noise power (assumed to be 1.0×10-

10) regardless of the filter order. The noise power densities were selected to demonstrate a

16-bits resolution sensitivity application and to show the SNR degradation from the

maximum available 100 dB SNR from the input signal. The optimal cut-off frequency for

147

maximum SNR can be obtained numerically as shown in Figure 97. For each filter order,

the effect of a single stage buffer is also displayed. From the plot we see that a filter order

of 2 greatly enhances SNR, and a buffer has little impact on the SNR.

Figure 97: SNR improvement of Butterworth filters for band limited input C

C.5 Modeling of Sample-and-Hold

A simple voltage sampling and holding circuit is modeled as shown in Figure 98.

The switch in the figure is turned on to track and sample the input voltage. After

sampling, it is turned off to hold the sampled voltage for analog-to-digital conversion.

With the switch turned on, the frequency domain representation of the current that goes

148

through the switch is given in (39), and the holding voltage Vsh(f) is obtained as given in

(40) [11-13].

Figure 98: Voltage sample-and-hold model

(39): Iin =
Vin (f)

RH +1/(j2πfCH)

(40):
Vsh (f) = 1

j2πfCH

Iin (f)

=
1

j2πfCH RH +1
Vin (f)

149

The holding capacitance CH must be large enough to avoid current leakage during

holding cycle and it should be small enough to track the input voltage during sampling

cycle. There is a trade-off between the tracking accuracy and the holding accuracy with

the capacitor size. As shown in (40), the sample-and-hold circuit is a low-pass filter when

the switch is on. The time constant of the filter is CHRH. To allow fast tracking, it should

be small, and it should be small enough to avoid transient error, which should be smaller

than the desired ADC quantization step. As mentioned, a smaller holding capacitor

suffers more from capacitor leakage current. Also the smaller capacitance involves larger

kT/C noise [65]. The transient characteristics of the buffer between vsh and vout should be

taken into account. It must be fast enough to follow the sampled voltage, while the high-

order overshooting should be avoided for accurate analog-to-digital conversion [11-13].

A current integrating sample-and-hold front-end can be modeled in a similar way.

For input current i(t), integration time T, and capacitance C, the sampled voltage v(t) is

obtained as (41) in time domain and (42) in frequency domain. When Nyquist sampling

frequency 2 is taken for the normalized signal band 1, the integrating time T is less than

0.5. Figure 99 shows the frequency response V(f) with a first-order low-pass filter whose

cut-off frequency is 0.5, as an asymptote. Capacitance C is 0.5 in the figure to adjust DC

gain to 1. The figure shows that the current integrating sample-and-hold type circuits are

low-pass filters in its operation.

(41): [u(t) − u(t − T)]∗ i(t) = Cv(t)

150

(42):)2(
2

1)2(
2

fjI
fCj

efjV
fTj

π
π

π
π−−

=

Figure 99: Current integrating sample-and-hold frequency response

C.6 Available ADC SNR without Sample-and-Hold

A sample-and-hold takes a critical role in Nyquist sampling ADCs. The

importance of sampling timing and clock jitter already have been examined and analyzed

[15, 25]. The absence of sample-and-hold can be treated as a worst case of sampling

timing miss or clock jitter noise.

151

Let's assume A/D conversion of a sinusoid with oscillation frequency f0 and peak-

to-peak amplitude 1. Intuitively, higher the oscillation frequency, as high as 1/2 of

Nyquist frequency fNyq, and greater the oscillation amplitude, ADC conversion error will

be larger. The largest conversion error will occur when sinusoid crosses mean value

during analog-to-digital conversion process. The actual amount of error introduced by an

ADC will be highly dependent on the specific conversion algorithms. For example,

single-slope ADC is likely to experience less error than algorithmic ADC since

algorithmic ADC encodes exponentially while single-slope ADC encodes linearly. A

single-slope ADC conversion error example is provided in Figure 100.

Figure 100: Single-slope ADC conversion error example without sample-and-hold

152

Let's assume that input signal has bandwidth 1, and Nyquist frequency is fNyq = 2.

A pseudo ideal ADC with infinite precision is assumed that its conversion takes whole

sampling period and an input value is sampled and held during conversion. The

conversion error of the pseudo ADC is difference between the converted output and the

input value at the end of sampling period. Also a single-slope ADC with 210 = 1024

counting levels is assumed for comparison. Mean-square errors of both ADCs are plotted

over sinusoidal input frequency as shown in Figure 101. The plot claims that input signal

should be band-limited to f0 = ∆ to avoid conversion error. Higher the precision of an

ADC, lower the allowed sinusoid frequency for full resolution. Also conversion error is

increase by 6dB when sinusoid frequency is increased by 2 times. An ADC with different

conversion algorithm will show different mean-squared error.

Figure 101: Single-slope and pseudo ideal ADC conversion error

153

C.7 Continuous-time ∆Σ ADC Model

The property of first-order ∆Σ ADC can be described with an analog model as

shown in Figure 102. In the diagram, A and B represents gain of input buffer and

feedback path, and C is the capacitance value of integrator. The transfer function of the

integrator and a delay with sampling period T is esT/sC in the s-domain. The model

transfer function is given as (43). The model is can be replaced with the discrete-time ∆Σ

ADC model (44), when the approximate transformation z≈esT and sT≈1-z-1 are performed

and when A=C/T and A=B. The discrete-time model approximation z≈esT and sT≈1-z-1

are valid only when the signal frequency is low compared to the sampling frequency [11,

128].

Figure 102: Continuous-time ∆Σ ADC model

154

(43):

Y(s) = Gx (s)X(s) + Gq (s)Q(s)

=
Be−sT

sC + Ae−sT X(s) +
sC

sC + Ae−sT Q(s)

=
e−sT

sT + e−sT X(s) +
sT

sT + e−sT Q(s)

(44):)()1()()(11 zQzzXzzY −− −+=

The frequency response of the signal transfer function Gx(s) is plotted to see the

effect of the ∆Σ ADC as a signal filter as shown in Figure 103. Frequency is normalized

with respect to the oversampling frequency fs,os/2=NfM, not to the maximum desired

signal frequency fM as other diagrams are. A first-order LPF (dotted line in Figure 103 is

an asymptote of Gx(f). When the frequency responses are normalized to the signal band,

it becomes clear how higher oversampling ratio allows a wider signal bandwidth through

as shown in Figure 104. This characteristic will become important as a means of band

limiting the input signal. This allows ∆Σ ADCs to operate very well with no anti-alias

filter.

155

Figure 103: Frequency response of continuous-time ∆Σ ADC model

Figure 104: Continuous-time ∆Σ ADC frequency response normalized to signal

band

156

Appendix D

INFORMATION THEORY

D.1 Entropy and Source Coding

A/D conversion can be regarded as a communication channel that involves noise,

encoding, and decoding. Information theory provides several useful concepts on

quantization, signal source encoding and decoding.

Let's assume a probabilistic experiment with a discrete source S as a random

variable that takes symbols from a finite set of alphabet Γ given in (45). The probability

distribution P(S=sk) of Γ is given in (46) and (47). The amount of information obtained

after an observation of the event S=sk is defined in (48), where the observation is

regarded as a resolution of uncertainty. When the logarithm base is 2, the measure of

information becomes binary digit, i.e. bit. Then entropy H(Γ) of a discrete memoryless

source with alphabet Γ as an average information content per source symbol is defined as

(49) [90, 129-131].

(45): Γ = {s0,s1,L,sK−1}

157

(46): P(S = sk) = pk,k = 0,1,L,K −1

(47): ∑
−

=

=
1

0

1
K

k
kp

(48): 







=

k
k p

sI 1log)(

(49):)]([1log)(
1

0
k

K

k k
k sIE

p
pH =








=Γ ∑

−

=

The entropy H(Γ) of a discrete memoryless source is bounded as given in (50).

When there is no uncertainty, e.g. probability pk=1 for some k and all other probabilities

are zero, there is no information and H(Γ)=0. On the other hand, when all the events are

equally probable, i.e. equiprobable, the upper bound as the maximum entropy

H(Γ)=log2K is obtained, which means that it is the most difficult to predict an event. It

can be easily shown that the entropy function H(Γ) is continuous, additive, nonnegative,

and symmetric [90, 129-131].

(50): KH 2log)(0 ≤Γ≤

158

The ''information'' in information theory should be related to the uncertainty and

the resolution of uncertainty rather than the traditional idea of words such as knowledge

[90, 129-131]. In the source encoding perspective, Shannon claimed in the noiseless

coding theorem that H(Γ) is the minimum average number of bits per source symbol

required to represent a discrete memoryless source without loss [132].

D.2 Mutual Information and Channel Coding Theorem

When channel output Y is observed with channel input X, a conditional entropy

H(X|Y) is defined as (51). The conditional entropy represents the amount of uncertainty

left about the input after the observation. Therefore the difference between H(X) and the

differential entropy will be the uncertainty resolved about the input after observation. The

quantity is called the mutual information I(X; Y) and it is defined in (52). The mutual

information is symmetric and nonnegative, which means that one will not lose any

information with output observation. When the mutual information is maximized over

input probability distribution, it represents channel capacity of a discrete memoryless

channel in bits per channel use, as defined in (53). When maximum channel symbol rate

is Tc and source symbol rate is Ts, the average information rate is H(X)/Ts bits per second

and channel capacity per unit time is C/Tc. Shannon's channel coding theorem or noisy

coding theorem states that there exists a coding algorithm that enables zero probability of

error transmission of data, when a relation given in (54) holds. This theorem only shows

159

that there is a scheme that achieves error-free communication and it does not shows a

way to implement it [90, 129-132].

(51): H(X |Y) = H(X |Y = yk)p(yk)
k= 0

K −1

∑

(52):);()();(YXHXHYXI −=

(53):);(max
)(

YXIC
jxp

=

(54):
cs T

C
T

XH
≤

)(

D.3 Differential Entropy and Information Capacity Theorem

The differential entropy of a continuous random variable X h(X) is defined in (55).

Not like the absolute entropy H(X) defined with a discrete source, the reference term ''-

log2∆x'' that goes to infinity as ∆ goes to 0 is discarded for practical purpose as shown in

(56). The differential entropy is upper bounded as given in (57), where Gaussian random

variable with variance σ2 attains maximum differential entropy. The definition of mutual

information for continuous random variable X and Y is given in (58).

160

(55): h(X) = fX (x)log2

1
fX (x)









 dx

−∞

∞

∫

(56): xXhXH
x

∆−=
→∆ 20

loglim)()(

(57):)2(log
2
1)(2

2 σπeXh ≤

(58): dxdy
xf

yxf
yxfYXI

X

X
YX∫ ∫

∞

∞−

∞

∞−








=

)(
)|(

log),();(2,

For a discrete-time, memoryless Gaussian channel with transmission time T, band

limit B, and power limit E[Xk
2]=P for all k, let's assume input signal Xk, additive white

Gaussian noise Nk, and received signal Yk as (59), where K=2BT is the number of

samples. The Gaussian noise has zero mean, power spectral density N0/2, therefore,

variance is σ2=N0B. The information capacity is defined with the maximum mutual

information over input distributions and power limit as given in (60). For the maximum

capacity, Xk should be Gaussian with average power P. The differential entropy h(Yk)

and h(Nk) are arranged as in (61) and (62) using property of Gaussian distribution.

Therefore the information capacity in bits per transmission is (63) and capacity in bits per

second is (64).

(59): Yk = Xk + Nk,k =1,2,L,K

161

(60): }][:);({max
)(

PXEYXIC w
kkkxf kX

==

(61):)](2[log
2
1)(2

2 Nk PeYh σπ +=

(62):)2(log
2
1)(2

2 Nk eNh σπ=

(63): 







+= 22 1log

2
1

N

PC
σ

(64): 







+=

BN
PBC
0

2 1log

Shannon's information capacity theorem claims that the capacity of a continuous

channel with band limit B and power limit P is limited by these capacity relations, and

that the given capacity of error-free transmission can be achieved through an encoding

scheme. The transmitted energy per bit Eb can be defined with P=EbC to transform (64)

into (65). The relation between C/B and Eb/N0 plotted in Figure 105 is called the

bandwidth efficiency diagram [90, 129-132].

(65): Eb

N0

=
2C / B −1

C /B

162

Figure 105: Bandwidth efficiency diagram

163

Appendix E

SI-CMOS TRANSISTOR SPICE MODELS

All circuit designs and simulations are based on AMI 1.5 µm n-well Si-CMOS

chip fabrication services provided through MOSIS [8]. The process provides two poly

layers, two metal layers, an NPN option, and PiP capacitors.

E.1 MOSIS SPICE Models

The following model list with run numbers is obtained from MOSIS web page

[133].

T0CU T14Z T15L T16Q T16S
T16V T17D T18K T1AT T1AZ
T1CI T1CL T21M T22X T23F
T24P T26W T27G T28N T28P
T29V T2AH T2CR T31A T31E
T32P T32Q T33Z T34D T35O
T37C T38F T39T T3AG

E.2 MOSIS SPICE Model Run Number T0CU

* DATE: Aug 23/01
* LOT: T0CU WAF: 5114

164

* Temperature_parameters=Default
.MODEL CMOSN NMOS (LEVEL = 49
+VERSION = 3.1 TNOM = 27 TOX = 3.06E-8
+XJ = 3E-7 NCH = 7.5E16 VTH0 = 0.5461273
+K1 = 0.9248171 K2 = -0.0746521 K3 = 7.3546504
+K3B = -1.3783456 W0 = 1E-7 NLX = 1E-8
+DVT0W = 0 DVT1W = 0 DVT2W = 0
+DVT0 = 0.6105593 DVT1 = 0.2813887 DVT2 = -0.3207057
+U0 = 687.6635171 UA = 2.222506E-9 UB = 1.213885E-18
+UC = 5.939783E-11 VSAT = 1.06244E5 A0 = 0.6091078
+AGS = 0.1475122 B0 = 2.455572E-6 B1 = 5E-6
+KETA = -5.207522E-3 A1 = 0 A2 = 1
+RDSW = 3E3 PRWG = -0.0591643 PRWB = -0.0365956
+WR = 1 WINT = 7.73594E-7 LINT = 2.483956E-7
+XL = 0 XW = 0 DWG = -2.100159E-8
+DWB = 3.664922E-8 VOFF = -4.161505E-3 NFACTOR = 1.0577976
+CIT = 0 CDSC = 0 CDSCD = 0
+CDSCB = 4.95502E-6 ETA0 = -0.6952862 ETAB = -0.2227648
+DSUB = 0.6107704 PCLM = 1.3283099 PDIBLC1 = 8.983088E-3
+PDIBLC2 = 1.979186E-3 PDIBLCB = 0.1 DROUT = 0.0615405
+PSCBE1 = 2.205899E9 PSCBE2 = 5.040015E-10 PVAG = 0.2668387
+DELTA = 0.01 RSH = 52.5 MOBMOD = 1
+PRT = 0 UTE = -1.5 KT1 = -0.11
+KT1L = 0 KT2 = 0.022 UA1 = 4.31E-9
+UB1 = -7.61E-18 UC1 = -5.6E-11 AT = 3.3E4
+WL = 0 WLN = 1 WW = 0
+WWN = 1 WWL = 0 LL = 0
+LLN = 1 LW = 0 LWN = 1
+LWL = 0 CAPMOD = 2 XPART = 0.5
+CGDO = 1.8E-10 CGSO = 1.8E-10 CGBO = 1E-9
+CJ = 2.807209E-4 PB = 0.9642875 MJ = 0.5323927
+CJSW = 1.202779E-10 PBSW = 0.9809784 MJSW = 0.1
+CJSWG = 6.4E-11 PBSWG = 0.9809784 MJSWG = 0.1
+CF = 0)
*
.MODEL CMOSP PMOS (LEVEL = 49
+VERSION = 3.1 TNOM = 27 TOX = 3.06E-8
+XJ = 3E-7 NCH = 2.4E16 VTH0 = -0.8476404
+K1 = 0.4513608 K2 = 2.379699E-5 K3 = 13.3278347
+K3B = -2.2238332 W0 = 9.577236E-7 NLX = 2.924346E-7
+DVT0W = 0 DVT1W = 0 DVT2W = 0
+DVT0 = 2.097586 DVT1 = 0.6808189 DVT2 = -0.0568857
+U0 = 236.8923827 UA = 3.833306E-9 UB = 1.487688E-21
+UC = -1.08562E-10 VSAT = 1.659328E5 A0 = 0.7884225
+AGS = 0.1890823 B0 = 3.435275E-6 B1 = 1.229777E-6
+KETA = -1.960186E-3 A1 = 0 A2 = 0.364
+RDSW = 3E3 PRWG = 0.1155013 PRWB = -0.3
+WR = 1 WINT = 7.565065E-7 LINT = 9.504967E-8
+XL = 0 XW = 0 DWG = -2.13917E-8
+DWB = 3.857544E-8 VOFF = -0.0877184 NFACTOR = 0.2508342
+CIT = 0 CDSC = 2.924806E-5 CDSCD = 1.497572E-4
+CDSCB = 1.091488E-4 ETA0 = 0.15903 ETAB = -0.0240819
+DSUB = 0.2873 PCLM = 1.7338623 PDIBLC1 = 4.152377E-3
+PDIBLC2 = 1E-3 PDIBLCB = -1E-3 DROUT = 0.0707408
+PSCBE1 = 3.324052E9 PSCBE2 = 1.718711E-6 PVAG = 15

165

+DELTA = 0.01 RSH = 74.4 MOBMOD = 1
+PRT = 0 UTE = -1.5 KT1 = -0.11
+KT1L = 0 KT2 = 0.022 UA1 = 4.31E-9
+UB1 = -7.61E-18 UC1 = -5.6E-11 AT = 3.3E4
+WL = 0 WLN = 1 WW = 0
+WWN = 1 WWL = 0 LL = 0
+LLN = 1 LW = 0 LWN = 1
+LWL = 0 CAPMOD = 2 XPART = 0.5
+CGDO = 2.3E-10 CGSO = 2.3E-10 CGBO = 1E-9
+CJ = 3.021506E-4 PB = 0.7425959 MJ = 0.4286385
+CJSW = 1.472483E-10 PBSW = 0.99 MJSW = 0.1
+CJSWG = 3.9E-11 PBSWG = 0.99 MJSWG = 0.1
+CF = 0)

166

Appendix F

MATLAB SCRPITS

F.1 Architectural Performance Comparison Simulation Scripts

F.1.1 Summarized Comparison Simulation with Signal Model A:

AllCaseAComparison.m

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%Main Setting
warning off MATLAB:divideByZero;
k=1.38e-23;
T=300;
Nc=1e-10;
tFidx=[0 0.002 200];
Pin=1;
Fc=0.01:0.01:1.0;
FtType=[6];
Fs=2;
Kord=100;
T0=0.5;
C=1e-5;
R=1;
Nk=k*T/C;

AllSnrNyq=zeros(3,length(Fc));
AllSnrOvs=zeros(4,length(Fc));

%Input Signal Generation
Fidx=tFidx(2):tFidx(2):tFidx(3);
SigIdx=find(Fidx==1);
Bf=SigSpecGen(1,3,tFidx,Pin);
SH=SigSpecGen(1,3,tFidx,Pin);
SX=SigSpecGen(0,1,tFidx,Pin);
NX=SigSpecGen(0,1,tFidx,Nc);

167

Lpf=zeros(1,length(SX));
SiBf=zeros(1,length(SX));
SiNBf=zeros(1,length(SX));
NiBf=zeros(1,length(SX));
NiNBf=zeros(1,length(SX));
SnrBf=zeros(length(FtType),length(Fc));
SnrNBf=zeros(length(FtType),length(Fc));
SnrOvBf=zeros(length(FtType),length(Fc));
SnrOvNBf=zeros(length(FtType),length(Fc));

for k=1:length(Fc),
 for m=1:length(FtType),
 Lpf=SigSpecGen(Fc(k),FtType(m),tFidx,Pin);
 SiBf=((SX.*Bf).*Lpf).*SH;
 SiNBf=(SX.*Lpf).*SH;
 NiBf=((NX.*Bf+Nc).*Lpf+Nc).*SH+Nc+Nk;
 NiNBf=(NX.*Lpf+Nc).*SH+Nc+Nk;
 SpBf=sum(SiBf(1:SigIdx));
 SpNBf=sum(SiNBf(1:SigIdx));
 NpBf=[sum(SiBf(SigIdx+1:length(SiBf))) sum(NiBf(1:SigIdx))
sum(NiBf(SigIdx+1:length(SiBf)))];
 NpNBf=[sum(SiNBf(SigIdx+1:length(SiNBf))) sum(NiNBf(1:SigIdx))
sum(NiNBf(SigIdx+1:length(SiNBf)))];
 SnrBf(m,k)=10*log10(SpBf/sum(NpBf));
 SnrNBf(m,k)=10*log10(SpNBf/sum(NpNBf));
 SnrOvBf(m,k)=10*log10(SpBf/NpBf(2));
 SnrOvNBf(m,k)=10*log10(SpNBf/NpNBf(2));
 end
end

AllSnrNyq(1,:)=SnrBf;
AllSnrOvs(1,:)=SnrOvNBf;

%DirSHAnalCaseAVa
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%Main Setting
warning off MATLAB:divideByZero;
k=1.38e-23;
T=300;
Nc=1e-10;
tFidx=[0 0.002 200];
Pin=1;
Fc=0.01:0.01:1.0;
BfType=[6];
Fs=2;
Kord=100;
T0=0.5;
C=1e-10;
R=1;
Nk=k*T/C;

%Input Signal Generation
Fidx=tFidx(2):tFidx(2):tFidx(3);
SigIdx=find(Fidx==1);
Bf=zeros(size(Fidx));

168

SH=SigSpecGen(1,3,tFidx,Pin);
SX=SigSpecGen(0,1,tFidx,Pin);
NX=SigSpecGen(0,1,tFidx,Nc);
SiBf=zeros(size(SX));
SiNBf=zeros(size(SX));
NiBf=zeros(size(SX));
NiNBf=zeros(size(SX));
SnrBf=zeros(length(BfType),length(Fc));
SnrNBf=zeros(length(BfType),length(Fc));
SnrOvBf=zeros(length(BfType),length(Fc));
SnrOvNBf=zeros(length(BfType),length(Fc));

for k=1:length(Fc),
 for m=1:length(BfType),
 Bf=BfSpecGen(Fc(k),BfType(m),tFidx,Pin);
 SiBf=(SX.*Bf).*SH;
 SiNBf=SX.*SH;
 NiBf=(NX.*Bf+Nc).*SH+Nc+Nk;
 NiNBf=NX.*SH+Nc+Nk;
 SpBf=sum(SiBf(1:SigIdx));
 SpNBf=sum(SiNBf(1:SigIdx));
 NpBf=[sum(SiBf(SigIdx+1:length(SiBf))) sum(NiBf(1:SigIdx))
sum(NiBf(SigIdx+1:length(SiBf)))];
 NpNBf=[sum(SiNBf(SigIdx+1:length(SiNBf))) sum(NiNBf(1:SigIdx))
sum(NiNBf(SigIdx+1:length(SiNBf)))];
 SnrBf(m,k)=10*log10(SpBf/sum(NpBf));
 SnrNBf(m,k)=10*log10(SpNBf/sum(NpNBf));
 SnrOvBf(m,k)=10*log10(SpBf/NpBf(2));
 SnrOvNBf(m,k)=10*log10(SpNBf/NpNBf(2));
 end
end

AllSnrNyq(2,:)=SnrBf;
AllSnrOvs(2,:)=SnrOvNBf;

%DirADCAnanl
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%Main Setting
warning off MATLAB:divideByZero;
k=1.38e-23;
T=300;
Nc=1e-10;
tFidx=[0 0.002 200];
Pin=1;
Fc=0.01:0.01:1.0;
BfType=[6];
Fs=2;
Kord=100;
T0=0.5;
C=1e-10;
R=1;
Nk=k*T/C;

%Input Signal Generation
Fidx=tFidx(2):tFidx(2):tFidx(3);

169

SigIdx=find(Fidx==1);
Bf=zeros(size(Fidx));
SH=SigSpecGen(1,3,tFidx,Pin);
SX=SigSpecGen(0,1,tFidx,Pin);
NX=SigSpecGen(0,1,tFidx,Nc);
SiBf=zeros(size(SX));
SiNBf=zeros(size(SX));
NiBf=zeros(size(SX));
NiNBf=zeros(size(SX));
SnrBf=zeros(length(BfType),length(Fc));
SnrNBf=zeros(length(BfType),length(Fc));
SnrOvBf=zeros(length(BfType),length(Fc));
SnrOvNBf=zeros(length(BfType),length(Fc));

WtBar= waitbar(0,'Processing');
for k=1:length(Fc),
 waitbar(k/length(Fc),WtBar)
 for m=1:length(BfType),
 Bf=BfSpecGen(Fc(k),BfType(m),tFidx,Pin);
 SiBf=SX.*Bf;
 SiNBf=SX;
 NiBf=NX.*Bf+Nc;
 NiNBf=NX;
 SpBf=sum(SiBf(1:SigIdx));
 SpNBf=sum(SiNBf(1:SigIdx));
 NpBf=[sum(SiBf(SigIdx+1:length(SiBf))) sum(NiBf(1:SigIdx))
sum(NiBf(SigIdx+1:length(SiBf)))];
 NpNBf=[sum(SiNBf(SigIdx+1:length(SiNBf))) sum(NiNBf(1:SigIdx))
sum(NiNBf(SigIdx+1:length(SiNBf)))];
 SnrBf(m,k)=10*log10(SpBf/sum(NpBf));
 SnrNBf(m,k)=10*log10(SpNBf/sum(NpNBf));
 SnrOvBf(m,k)=10*log10(SpBf/NpBf(2));
 SnrOvNBf(m,k)=10*log10(SpNBf/NpNBf(2));
 end
end
close(WtBar)

AllSnrNyq(3,:)=SnrBf;
AllSnrOvs(3,:)=SnrOvBf;
AllSnrOvs(4,:)=SnrOvNBf;

F.1.2 Signal Spectrum Generator: SigSpecGen.m

function x=SigSpecGen(Fc,Type,tFidx,Pin)
%
Fidx=tFidx(2):tFidx(2):tFidx(3);
switch Type
 case 1, %flat spectrum
 x=Pin*ones(size(Fidx));
 case 2, %ideal lpf

170

 x=(-sign(sign(Fidx-Fc)+0.5)+1)*0.5*Pin;
 otherwise
 if Type>=3,
 x=Pin./(1+(Fidx/Fc).^(2*(Type-2)));
 end
end

F.1.3 Buffer Frequency Spectrum Generator: BfSpecGen.m

function x=BfSpecGen(Fc,Type,tFidx,Pin)
Fidx=tFidx(2):tFidx(2):tFidx(3);
switch Type
 case 1, %flat spectrum
 x=Pin*ones(size(Fidx));
 case 2, %ideal lpf
 x=(-sign(sign(Fidx-Fc)+0.5)+1)*0.5*Pin;
 otherwise
 if Type>=3,
 x=Pin./(abs(1+(j*Fidx/Fc)).^(2*(Type-2)));
 end
end

F.2 ∆Σ Decoding Performance Simulation Scripts

F.2.1 Ideal Performance Simulation: DsmDecIdealTest.m

OSR=2.^(2:11);
AlgoNo=4;
Mse=zeros(AlgoNo,length(OSR));
Time=zeros(AlgoNo,length(OSR));
for m=1:length(OSR),
 N=OSR(m);
 X=[0:(1/(N*10)):1];
 Err=zeros(AlgoNo,length(X));
 tIdx=0:(N-1);
 Hopt=6*(tIdx+1).*(N-tIdx)/(N*(N+1)*(N+2));
 WB = waitbar(0,['Processing OSR ' num2str(OSR(m))]);
 for n=1:AlgoNo,
 waitbar(n/AlgoNo,WB);
 tic;
 for x=1:length(X),
 [Y,Q]=DSM1(X(x)*ones(N+1,1),0.5);
 switch n

171

 case 1, %Linear Filter
 Output=sum(Y.*Hopt');
 Err(1,x)=Output-X(x);
 case 2, %Zoomer
 Output=SingleZoomer(X(x),N,0,0.5,1,1,0.5);
 Err(2,x)=Output-X(x);
 case 3, %NlogN
 [A,B,Tp,Iter]=NlogNDecoder(Y(1:N),1);
 Output=A/B;
 Err(3,x)=(A/B)-X(x);
 RcCount(x)=Iter;
 case 4, %Daeik's algorithm
 Output=DaeikDSMDec(Y(1:N));
 Err(4,x)=Output-X(x);
 otherwise
 end %switch
 end %for x
 Time(n,m)=toc/length(X);
 end %for n
 close(WB);
 Mse(:,m)=mean(Err.^2,2);
end %for m

F.2.2 Ideal First-order ∆Σ ADC Model: DSM1.m

function [Y,Q]=DSM1(X,Ref)
%Delta Sigma Modulator 1st order Model Function
%X: Input Sequence
%Ref: Switching reference
%Y: Modulated Sequence
%Q: Quantization Noise Sequence
W=0;
X=X(:);
L=length(X);
Y=zeros(L,1);
Q=zeros(L,1);
for i=1:L,
 if W>Ref,
 Y(i)=1;
 end
 Q(i)=W-Y(i);
 W=W+X(i)-Y(i);
end
Y=Y(2:length(Y));
Q=Q(2:length(Q));

172

F.2.3 Ideal Single Zoomer Decoding: SingleZoomer.m

function Y=SingleZoomer(Xn,N,Q0,DC,Q1,K,Init)
% Xn : Input value, a number for dc, or a sequence
% N : Number of iteration;
% Q0 : Off value of Delta-sigma
% DC : On/Off decision point, half between Q0 and Q1
% Q1 : On value of Delta-sigma;
% K : range scaler 0-1
% Init : Initial integrator condition Q0-Q1
if length(Xn)==1,
 Xn=Xn*ones(N,1);
end
L=Q1-K*(Q1-Q0);
U=Q0+K*(Q1-Q0);
Un=zeros(N,1);
Qn=zeros(N,1);
Un(1)=Init;
if Un(1)>DC,
 Qn(1)=Q1;
else
 Qn(1)=Q0;
end
S=Qn(1);

Un(2)=Un(1)+Xn(1)-Qn(1);
Qn(2)=Quantize2(Un(2),Q0,DC,Q1);
if Un(2)>DC,
 Qn(2)=Q1;
else
 Qn(2)=Q0;
end
for n=2:N-1,
 S=S+Qn(n);
 Xb=S/n;
 Un(n+1)=Un(n)+Xn(n)-Qn(n);
 if Un(n+1)>DC,
 Qn(n+1)=Q1;
 L=max([L Xb]);
 else
 Qn(n+1)=Q0;
 U=min([U Xb]);
 end
end
Y=(L+U)/2;

F.2.4 Ideal Recursive Decoding: NlogNDecoder.m

function [A,B,Tp,Iter]=NlogNDecoder(Y,Iter);

173

%
[L,J,Tp]=NlogNTypeCheck(Y);
[A, B]=NlogNDecRecFinal(L,J,Y,Tp);
if Tp==1,
 A=B-A;
end
if B~=0 & A~=0,
 return
end
Lmax=max(L);
W=L-Lmax+1;
[rA,rB,rTp,Iter]=NlogNDecoder(W,Iter+1);
B=Lmax*rB+rA;
if Tp==0,
 A=rB;
else
 A=B-rB;
end
return

F.2.5 Ideal Correlative Decoding: QNCorrDec.m

function X=QNCorrDec(Q)
%Q should have even numbers of output
N=length(Q);
K=N/2;
R=zeros(K,1);
for k=1:K,
 R(k)=sum(Q(k+1:N).*Q(1:(N-k)))/(N-k);
end
[tL, Lest]=max(R);
X=sum(Q(1:Lest))/Lest;

F.2.6 Ideal Proposed Decoding: DaeikDSMDec.m

function Est=DaeikDSMDec(Y)
%
L=length(Y);
BL=0;
BU=1;
tS=0;
for k=1:L,
 tS=tS+Y(k);
 tXL=(tS-0.5)/k;
 tXU=(tS+0.5)/k;
 BL=max([tXL BL]);

174

 BU=min([tXU BU]);
end
Est=(BL+BU)/2;

F.3 Clock Jitter Generation and Simulation Analysis Scripts

F.3.1 Clock Generation Main Script: GenClockFiles.m

vA=10.^(-4:0.2:-1);
for M=1:length(vA),
 for K=1:20,
 ClockJitterGenerator(vA(M),K,M);
 end
end

F.3.2 Clock Jitter Generation Script: ClockJitterGenerator.m

function ClockJitterGenerator(A,K,M)
SampleNo=280;
Von=5;
RFTm=0.001;
UnitTime=0.5;
ClkDuty=0.25;
TimeUnit='u';
VoltUnit='v';

fCS=['ClkSet' num2str(M) 'A' num2str(K) '.spice'];
fCR=['ClkRst' num2str(M) 'A' num2str(K) '.spice'];

FidCS=fopen(fCS,'w');
FidCR=fopen(fCR,'w');
fprintf(FidCS,'VSet\tVSet\t0\tPWL\n+0%s\t%d%s\n', TimeUnit, 0, VoltUnit);
fprintf(FidCR,'VRst\tVRst\t0\tPWL\n+0%s\t%d%s\n', TimeUnit, Von, VoltUnit);
JR=[];
JS=[];
for k=1:SampleNo+10,
 Jitter=A*UnitTime*randn(1,1);
 TmA=(k-1)*UnitTime+UnitTime*ClkDuty-RFTm/2+Jitter;
 TmB=(k-1)*UnitTime+UnitTime*ClkDuty+RFTm/2+Jitter;
 Jitter=A*UnitTime*randn(1,1);
 TmC=k*UnitTime-RFTm/2+Jitter;
 TmD=k*UnitTime+RFTm/2+Jitter;

175

 fprintf(FidCR,'+%f%s\t%d%s\t', TmA, TimeUnit, Von, VoltUnit);
 fprintf(FidCR,'+%f%s\t%d%s\t', TmB, TimeUnit, 0, VoltUnit);
 fprintf(FidCR,'+%f%s\t%d%s\t', TmC, TimeUnit, 0, VoltUnit);
 fprintf(FidCR,'+%f%s\t%d%s\n', TmD, TimeUnit, Von, VoltUnit);
 Jitter=A*UnitTime*randn(1,1);
 TmA=(k-1)*UnitTime+UnitTime*0.5-RFTm/2+Jitter;
 TmB=(k-1)*UnitTime+UnitTime*0.5+RFTm/2+Jitter;
 Jitter=A*UnitTime*randn(1,1);
 TmC=(k-1)*UnitTime+UnitTime*ClkDuty+UnitTime*0.5-RFTm/2+Jitter;
 TmD=(k-1)*UnitTime+UnitTime*ClkDuty+UnitTime*0.5+RFTm/2+Jitter;
 fprintf(FidCS,'+%f%s\t%d%s\t', TmA, TimeUnit, 0, VoltUnit);
 fprintf(FidCS,'+%f%s\t%d%s\t', TmB, TimeUnit, Von, VoltUnit);
 fprintf(FidCS,'+%f%s\t%d%s\t', TmC, TimeUnit, Von, VoltUnit);
 fprintf(FidCS,'+%f%s\t%d%s\n', TmD, TimeUnit, 0, VoltUnit);
end

fclose(FidCS);
fclose(FidCR);

F.3.3 Generated Clock Jitter Spice Input Example: ClkRst1A1.m

VRst VRst 0 PWL
+0u 5v
+0.124429u 5v +0.125429u 0v +0.499487u 0v +0.500487u 5v
+0.624513u 5v +0.625513u 0v +0.999486u 0v +1.000486u 5v
+1.124428u 5v +1.125428u 0v +1.499480u 0v +1.500480u 5v
+1.624520u 5v +1.625520u 0v +1.999454u 0v +2.000454u 5v
+2.124511u 5v +2.125511u 0v +2.499479u 0v +2.500479u 5v
+2.624452u 5v +2.625452u 0v +2.999482u 0v +3.000482u 5v
(.....)
+142.624493u 5v +142.625493u 0v +142.999637u 0v +143.000637u 5v
+143.124386u 5v +143.125386u 0v +143.499467u 0v +143.500467u 5v
+143.624417u 5v +143.625417u 0v +143.999524u 0v +144.000524u 5v
+144.124587u 5v +144.125587u 0v +144.499478u 0v +144.500478u 5v
+144.624537u 5v +144.625537u 0v +144.999599u 0v +145.000599u 5v

F.3.4 Simulation Output Analysis Script: DataProcess.m

vA=10.^(-4:0.2:-1);
DSMStr='DSMSimOut'; %DSMSimOutT3AG953.out
SSCStr='SSCSimOut'; %SSCSimOutT3AG953.out
VPre='V';
NPre='N';
IPre='I';

IRange=10:10:990;

176

NI=length(IRange);
VRange=1:16;
NV=length(VRange);
NRange=1:20;
NN=length(NRange);
DSMSwpA=zeros(length(VRange)*length(NRange), length(IRange));

for v=1:NV,
 V=VRange(v);
 for n=1:NN,
 N=NRange(n);
 for k=1:NI,
 Input=IRange(k);
 FileSuffix=[VPre num2str(V) NPre num2str(N) IPre num2str(Input)];
 %LOAD Data
 eval(['load Data\' DSMStr FileSuffix '.out;']);
 eval(['DSMMat=' DSMStr FileSuffix ';']);
 eval(['clear ' DSMStr FileSuffix ';']);
 DSMSwpA(NN*(v-1)+n,k)=DSMDecA(DSMMat);
 end
 end
end

DSMSwpM=[];
DSMSwpV=[];
DSMSwpMSE=[];
for v=1:NV,
 DSMSwpM=[DSMSwpM; mean(DSMSwpA((1+NN*(v-1)):(NN*v),:))];
 DSMSwpV=[DSMSwpV; std(DSMSwpA((1+NN*(v-1)):(NN*v),:),0,1)];
 %DSMSwpMSE=[DSMSwpMSE; sum(DSMSwpV(v,:))/length(DSMSwpV(v,:))];
 tD=[];
 for k=1:NN,
 tD=[tD DSMSwpA(k+NN*(v-1),:)-DSMSwpM(v,:)];
 end
 tD=tD.^2;
 DSMSwpMSE=[DSMSwpMSE; sqrt(sum(tD)/length(tD)^2)];
end

tin=0.5e-6*280;
fin=1/tin;
dt=10.^(-8:0.1:-5);
tdt=dt*fin;
kj=2^8*pi*sqrt(6)*dt/tin;
nred=log(1+kj.^2)/2*log(2)*6.02;

177

F.4 Data Acquisition Unit Output Statistical Analysis Script:

DataAnalyze.m

Files_=dir('*.txt');
Files={Files_.name};
Data=[];
Time=[];
for k=1:length(Files),
 FileName=Files{k};
 eval(['load ' FileName ';']);
 eval(['tData=X' FileName(1:10) ';']);
 eval(['clear X' FileName(1:10) ';']);
 Time=[Time;
24*60*60*str2num(FileName(3:4))+60*60*str2num(FileName(5:6))+60*str2num(FileNam
e(7:8))+str2num(FileName(9:10))];
 Data=[Data; tData(1,:) tData(2,:) tData(3,:)];
end

dData=[];
mData=[];
mpData=[];
pData=[];
rData=[];
rdData=[];
rmData=[];

for k=1:length(Files),
 dData=[dData; Data(k,:)-Data(1,:)];
 pData=[pData; sum(Data(k,:))];
 mData=[mData; sum((dData(k,:)/24).^2)];
 mpData=[mpData; sum((dData(k,:)/pData(k)).^2)];
 rData=[rData; Data(k,:)/pData(k)];
 rdData=[rdData; rData(k,:)-rData(1,:)];
 rmData=[rmData; sum((rdData(k,:)/24).^2)];
end
dTime=Time-Time(1);
dmTime=dTime/60;

178

Appendix G

HSPICE SIMULATION SCRIPTS

G.1 HSPICE Scripts

G.1.1 DSM.cir

*Delta Sigma ADC Simulation
*.option post node
.option fast accuracy
.option gshunt=1e-15 cshunt=1e-15
.include 'DSM.spice'
.include 'ami150cmosmodel.spice'

*PowerSupply
VddA Vdd! 0 PVsupply
VddB Vdd 0 PVsupply
VgndA GND! 0 0
VgndB gnd 0 0
.param PVsupply=5

*Circuit Biasing
Vbs Vbs 0 PVmid
Vref Vref 0 PVmid
Ibs Ibs 0 -1.05u
.param PVmid='PVsupply/2'

*Capacitor
Cint VInt 0 1000fF

*Clocking
.include 'CktClkSet.spice'
.include 'CktClkRst.spice'
*Vset VSet 0 PULSE(0 PVsupply 0 PTrsfl PTrsfl PClkDt PClock)
*Vrst VRst 0 PULSE(0 PVsupply PClkPhs PTrsfl PTrsfl PClkDt PClock)
*.param PTrsfl=1p
*.param PClock=0.5u

179

*.param PClkDtRt=0.25
*.param PClkDt='PClock*PClkDtRt'
*.param PClkPhs='PClock*0.5'

*Detector Input
.include 'CktDetInput.spice'

*Circuit Temperature
*.include 'CktTemp.spice'

*Simulation Command
.ic v(VInt)=PVmid
.tran PSimStp PSimEndTm
.param PSimStp=0.5u
.param PSimEndTm=150u
.print v(Vout)
.end

G.1.2 SSC.cir

*Single-Slope ADC Simulation
*.option post node
.option fast accuracy
.option gshunt=1e-15 cshunt=1e-15
.include 'SSC.spice'
.include 'ami150cmosmodel.spice'

*PowerSupply
VddA Vdd! 0 PVsupply
VddB Vdd 0 PVsupply
VgndA GND! 0 0
VgndB gnd 0 0
.param PVsupply=5

*Voltage Biasing
VDtBs VDtBs 0 PVmid
VApRf VApRf 0 PVmid
.param PVmid='PVsupply/2'

*Current Biasing
IItBs IItBs 0 0.08u
IApBs1 IApBs1 0 -1.0u
IApBs2 IApBs2 0 -2.0u
IApBs3 IApBs3 0 -2.0u
IApBs4 IApBs4 0 80u
IApBs5 IApBs5 0 1.15u

*Clocking
VRst VRst 0 pulse(0 PVsupply 0 PTrsfl PTrsfl PSmpTime PCycle)
*VRst VRst 0 0

180

VnRst VnRst 0 pulse(PVsupply 0 0 PTrsfl PTrsfl PSmpTime PCycle)
*VnRst VnRst 0 5
.param PTrsfl=1p
.param PCycle=10000u
.param PSmpTime=1u

*Capacitor
CInt VInt 0 1000fF
CSmp VSmp 0 1000fF

*Detector Input
.include 'CktDetInput.spice'

*Circuit Temperature
.include 'CktTemp.spice'

*Simulation Command
.ic v(VInt)=0
.tran PSimStp PSimEndTm
*.dc IDet 0 1u 0.01u
.param PSimStp=0.5u
.param PSimEndTm=130u
.print v(Vout)
.end

G.1.3 CktDetInput.spice

IDet IDet 0 500n

G.1.4 CktTemp.spice

.temp 25

G.2 Circuit Extraction

G.2.1 ∆Σ ADC Extraction: DSM.spice

* # FILE NAME: /HOME/AZALEA/FRONTEND/CADENCE/SIMULATION/DSM1V1/HSPICES/
* extracted/netlist/DSM1v1.C.raw

181

* Netlist output for hspiceS.
* Generated on Mar 5 16:29:12 2004
* File name: ConverterComparison_DSM1v1_extracted.S.
* Subcircuit for cell: DSM1v1.
* Generated for: hspiceS.
* Generated on Mar 5 16:29:12 2004.
C24 0 22 3.13343999320615E-15 M=1.0
C26 VSET 0 2.80704008214644E-15 M=1.0
C28 IBS 0 2.78528001748971E-15 M=1.0
C30 OUT2 0 5.03744003907641E-15 M=1.0
C32 VDD! 22 2.41535997711655E-15 M=1.0
C34 VDD! 21 4.70015998980922E-15 M=1.0
C36 21 22 2.76239996351848E-15 M=1.0
C38 0 20 5.82079982561971E-15 M=1.0
C40 0 19 6.33840006034666E-15 M=1.0
C42 0 18 4.17120019622665E-15 M=1.0
C44 0 VRST 23.6479994522023E-15 M=1.0
C46 0 VINT 12.8159998211792E-15 M=1.0
C48 VSET 0 23.1424004037886E-15 M=1.0
C50 IBS 0 23.9192007671883E-15 M=1.0
C52 OUT2 22 5.09136003891625E-15 M=1.0
C54 OUT2 0 16.2648808131735E-15 M=1.0
C56 OUT1 21 5.09136003891625E-15 M=1.0
C58 OUT1 0 17.8371992740414E-15 M=1.0
C60 VOUT 0 2.14879997916504E-15 M=1.0
C62 IDET 0 14.108400151001E-15 M=1.0
C64 VDD! 7 3.69040015492611E-15 M=1.0
C66 VDD! 21 4.13136000155254E-15 M=1.0
C68 VDD! 18 2.57040004074903E-15 M=1.0
C70 VDD! 0 2.48880006298411E-15 M=1.0
C72 VDD! VSET 3.08576008508873E-15 M=1.0
C74 VDD! OUT2 2.28383990084696E-15 M=1.0
C76 VDD! OUT1 3.82527998738099E-15 M=1.0
C78 VDD! IDET 16.524799649302E-15 M=1.0
C80 VBS 0 23.3952007750284E-15 M=1.0
C82 VREF 0 22.5232006846208E-15 M=1.0
C84 0 20 2.5619199703976E-15 M=1.0
C86 0 19 5.28880003078944E-15 M=1.0
C88 0 VRST 3.3892799421772E-15 M=1.0
C90 0 VINT 2.90800005671205E-15 M=1.0
C92 IBS 0 2.01391993495193E-15 M=1.0
C94 OUT2 0 3.56192007990421E-15 M=1.0
C96 OUT1 0 5.37248010971459E-15 M=1.0
C98 IDET 1 2.74816006912571E-15 M=1.0
C100 VDD! VRST 2.41871994506007E-15 M=1.0
C102 VDD! VINT 2.70879993037446E-15 M=1.0
C104 VDD! VSET 2.3961600695429E-15 M=1.0
C106 VDD! OUT1 4.74255991804993E-15 M=1.0
C108 VBS 2 3.08608005178455E-15 M=1.0
M110 VDD! OUT2 OUT1 VDD! CMOSP L=1.6E-6 W=3.2E-6 AD=12.7999997753814E-12
+AS=7.67999986522883E-12 PD=11.1999997898238E-6 PS=4.80000016978011E-6 M=1
M112 OUT1 21 VDD! VDD! CMOSP L=1.6E-6 W=3.2E-6 AD=7.67999986522883E-12
+AS=12.7999997753814E-12 PD=4.80000016978011E-6 PS=11.1999997898238E-6 M=1
M114 VDD! OUT1 OUT2 VDD! CMOSP L=1.6E-6 W=3.2E-6 AD=12.7999997753814E-12
+AS=7.67999986522883E-12 PD=11.1999997898238E-6 PS=4.80000016978011E-6 M=1

182

M116 OUT2 22 VDD! VDD! CMOSP L=1.6E-6 W=3.2E-6 AD=7.67999986522883E-12
+AS=12.7999997753814E-12 PD=4.80000016978011E-6 PS=11.1999997898238E-6 M=1
M118 VDD! 21 22 VDD! CMOSP L=1.6E-6 W=3.2E-6 AD=12.7999997753814E-12
+AS=7.67999986522883E-12 PD=11.1999997898238E-6 PS=4.80000016978011E-6 M=1
M120 22 VSET VDD! VDD! CMOSP L=1.6E-6 W=3.2E-6 AD=7.67999986522883E-12
+AS=12.7999997753814E-12 PD=4.80000016978011E-6 PS=11.1999997898238E-6 M=1
M122 VDD! 22 21 VDD! CMOSP L=1.6E-6 W=3.2E-6 AD=12.7999997753814E-12
+AS=7.67999986522883E-12 PD=11.1999997898238E-6 PS=4.80000016978011E-6 M=1
M124 21 VSET VDD! VDD! CMOSP L=1.6E-6 W=3.2E-6 AD=7.67999986522883E-12
+AS=12.7999997753814E-12 PD=4.80000016978011E-6 PS=11.1999997898238E-6 M=1
M126 20 VREF 7 VDD! CMOSP L=1.6E-6 W=3.2E-6 AD=12.7999997753814E-12
+AS=12.7999997753814E-12 PD=11.1999997898238E-6 PS=11.1999997898238E-6 M=1
M128 19 VINT 7 VDD! CMOSP L=1.6E-6 W=3.2E-6 AD=12.7999997753814E-12
+AS=12.7999997753814E-12 PD=11.1999997898238E-6 PS=11.1999997898238E-6 M=1
M130 7 18 12 VDD! CMOSP L=1.6E-6 W=3.2E-6 AD=12.7999997753814E-12
+AS=2.55999995507628E-12 PD=11.1999997898238E-6 PS=1.60000001869776E-6 M=1
M132 12 6 VDD! VDD! CMOSP L=1.6E-6 W=3.2E-6 AD=2.55999995507628E-12
+AS=12.7999997753814E-12 PD=1.60000001869776E-6 PS=11.1999997898238E-6 M=1
M134 18 18 6 VDD! CMOSP L=1.6E-6 W=3.2E-6 AD=12.7999997753814E-12
+AS=7.67999986522883E-12 PD=11.1999997898238E-6 PS=4.80000016978011E-6 M=1
M136 6 6 VDD! VDD! CMOSP L=1.6E-6 W=3.2E-6 AD=7.67999986522883E-12
+AS=12.7999997753814E-12 PD=4.80000016978011E-6 PS=11.1999997898238E-6 M=1
M138 VINT 1 11 VDD! CMOSP L=1.6E-6 W=3.2E-6 AD=12.7999997753814E-12
+AS=2.55999995507628E-12 PD=11.1999997898238E-6 PS=1.60000001869776E-6 M=1
M140 11 5 VDD! VDD! CMOSP L=1.6E-6 W=3.2E-6 AD=2.55999995507628E-12
+AS=12.7999997753814E-12 PD=1.60000001869776E-6 PS=11.1999997898238E-6 M=1
M142 2 1 10 VDD! CMOSP L=1.6E-6 W=3.2E-6 AD=12.7999997753814E-12
+AS=2.55999995507628E-12 PD=11.1999997898238E-6 PS=1.60000001869776E-6 M=1
M144 10 5 VDD! VDD! CMOSP L=1.6E-6 W=3.2E-6 AD=2.55999995507628E-12
+AS=12.7999997753814E-12 PD=1.60000001869776E-6 PS=11.1999997898238E-6 M=1
M146 1 1 5 VDD! CMOSP L=1.6E-6 W=3.2E-6 AD=12.7999997753814E-12
+AS=7.67999986522883E-12 PD=11.1999997898238E-6 PS=4.80000016978011E-6 M=1
M148 5 5 VDD! VDD! CMOSP L=1.6E-6 W=3.2E-6 AD=7.67999986522883E-12
+AS=12.7999997753814E-12 PD=4.80000016978011E-6 PS=11.1999997898238E-6 M=1
M150 VDD! OUT2 VOUT VDD! CMOSP L=1.6E-6 W=19.2E-6 AD=76.7999969175648E-12
+AS=46.0800009260964E-12 PD=27.1999997494277E-6 PS=4.80000016978011E-6 M=1
M152 VOUT OUT2 VDD! VDD! CMOSP L=1.6E-6 W=19.2E-6 AD=46.0800009260964E-12
+AS=76.7999969175648E-12 PD=4.80000016978011E-6 PS=27.1999997494277E-6 M=1
M154 20 VRST 19 0 CMOSN L=1.6E-6 W=3.2E-6 AD=12.7999997753814E-12
+AS=12.7999997753814E-12 PD=11.1999997898238E-6 PS=11.1999997898238E-6 M=1
M156 0 21 9 0 CMOSN L=1.6E-6 W=3.2E-6 AD=12.7999997753814E-12
+AS=2.55999995507628E-12 PD=11.1999997898238E-6 PS=1.60000001869776E-6 M=1
M158 9 OUT2 OUT1 0 CMOSN L=1.6E-6 W=3.2E-6 AD=2.55999995507628E-12
+AS=12.7999997753814E-12 PD=1.60000001869776E-6 PS=11.1999997898238E-6 M=1
M160 0 22 8 0 CMOSN L=1.6E-6 W=3.2E-6 AD=12.7999997753814E-12
+AS=2.55999995507628E-12 PD=11.1999997898238E-6 PS=1.60000001869776E-6 M=1
M162 8 OUT1 OUT2 0 CMOSN L=1.6E-6 W=3.2E-6 AD=2.55999995507628E-12
+AS=12.7999997753814E-12 PD=1.60000001869776E-6 PS=11.1999997898238E-6 M=1
M164 0 18 18 0 CMOSN L=1.6E-6 W=3.2E-6 AD=12.7999997753814E-12
+AS=12.7999997753814E-12 PD=11.1999997898238E-6 PS=11.1999997898238E-6 M=1
M166 0 4 4 0 CMOSN L=1.6E-6 W=3.2E-6 AD=12.7999997753814E-12
+AS=7.67999986522883E-12 PD=11.1999997898238E-6 PS=4.80000016978011E-6 M=1
M168 4 IBS IBS 0 CMOSN L=1.6E-6 W=3.2E-6 AD=7.67999986522883E-12
+AS=12.7999997753814E-12 PD=4.80000016978011E-6 PS=11.1999997898238E-6 M=1
M170 0 OUT2 17 0 CMOSN L=1.6E-6 W=3.2E-6 AD=12.7999997753814E-12

183

+AS=7.67999986522883E-12 PD=11.1999997898238E-6 PS=4.80000016978011E-6 M=1
M172 17 OUT1 4 0 CMOSN L=1.6E-6 W=3.2E-6 AD=7.67999986522883E-12
+AS=12.7999997753814E-12 PD=4.80000016978011E-6 PS=11.1999997898238E-6 M=1
M174 0 17 3 0 CMOSN L=1.6E-6 W=3.2E-6 AD=12.7999997753814E-12
+AS=7.67999986522883E-12 PD=11.1999997898238E-6 PS=4.80000016978011E-6 M=1
M176 3 IBS VINT 0 CMOSN L=1.6E-6 W=3.2E-6 AD=7.67999986522883E-12
+AS=12.7999997753814E-12 PD=4.80000016978011E-6 PS=11.1999997898238E-6 M=1
M178 VBS 2 2 0 CMOSN L=1.6E-6 W=3.2E-6 AD=12.7999997753814E-12
+AS=12.7999997753814E-12 PD=11.1999997898238E-6 PS=11.1999997898238E-6 M=1
M180 0 19 20 0 CMOSN L=1.6E-6 W=3.2E-6 AD=12.7999997753814E-12
+AS=7.67999986522883E-12 PD=11.1999997898238E-6 PS=4.80000016978011E-6 M=1
M182 IDET 2 1 0 CMOSN L=1.6E-6 W=3.2E-6 AD=12.7999997753814E-12
+AS=12.7999997753814E-12 PD=11.1999997898238E-6 PS=11.1999997898238E-6 M=1
M184 20 VSET 22 0 CMOSN L=1.6E-6 W=3.2E-6 AD=7.67999986522883E-12
+AS=12.7999997753814E-12 PD=4.80000016978011E-6 PS=11.1999997898238E-6 M=1
M186 0 20 19 0 CMOSN L=1.6E-6 W=3.2E-6 AD=12.7999997753814E-12
+AS=7.67999986522883E-12 PD=11.1999997898238E-6 PS=4.80000016978011E-6 M=1
M188 19 VSET 21 0 CMOSN L=1.6E-6 W=3.2E-6 AD=7.67999986522883E-12
+AS=12.7999997753814E-12 PD=4.80000016978011E-6 PS=11.1999997898238E-6 M=1
M190 0 OUT2 VOUT 0 CMOSN L=1.6E-6 W=8E-6 AD=31.9999998721343E-12
+AS=19.1999992293912E-12 PD=15.9999999596039E-6 PS=4.80000016978011E-6 M=1
M192 VOUT OUT2 0 0 CMOSN L=1.6E-6 W=8E-6 AD=19.1999992293912E-12
+AS=31.9999998721343E-12 PD=4.80000016978011E-6 PS=15.9999999596039E-6 M=1

G.2.2 Single-slope ADC Extraction: SSC.spice

* # FILE NAME: /HOME/AZALEA/FRONTEND/CADENCE/SIMULATION/SSADC2V3/HSPICES/
* extracted/netlist/SSADC2v3.C.raw
* Netlist output for hspiceS.
* Generated on Mar 4 17:25:46 2004
* File name: ConverterComparison_SSADC2v3_extracted.S.
* Subcircuit for cell: SSADC2v3.
* Generated for: hspiceS.
* Generated on Mar 4 17:25:46 2004.
C25 S3 0 3.11167992854942E-15 M=1.0
C27 0 9 2.16720007587825E-15 M=1.0
C29 0 4 2.26240001464429E-15 M=1.0
C31 0 VRST 35.0872014277283E-15 M=1.0
C33 0 VINT 7.01600016012873E-15 M=1.0
C35 VDTBS 0 33.0647984578096E-15 M=1.0
C37 S2B 0 2.55279996665451E-15 M=1.0
C39 S2A 0 2.28560003531135E-15 M=1.0
C41 IAPBS5 0 32.520800017765E-15 M=1.0
C43 IAPBS4 0 32.520800017765E-15 M=1.0
C45 VOUT 0 33.5831995621882E-15 M=1.0
C47 IAPBS3 0 33.2735988555714E-15 M=1.0
C49 IAPBS2 0 33.2735988555714E-15 M=1.0
C51 IAPBS1 0 33.2735988555714E-15 M=1.0
C53 IDET 0 18.8520006490266E-15 M=1.0
C55 S1B 0 2.27240008561958E-15 M=1.0

184

C57 VSMP 0 8.16079991669376E-15 M=1.0
C59 VDD! 4 3.15279999000683E-15 M=1.0
C61 VDD! IDET 25.2567996221085E-15 M=1.0
C63 IITBS 0 32.520800017765E-15 M=1.0
C65 NOUT 0 4.0124001533413E-15 M=1.0
C67 VAPRF 0 33.0647984578096E-15 M=1.0
C69 VNRST 0 33.0647984578096E-15 M=1.0
C71 S5 0 4.62719995986452E-15 M=1.0
C73 S5 VDD! 2.48399992727202E-15 M=1.0
C75 S4 0 3.20959990186733E-15 M=1.0
C77 S3 0 3.27999998648719E-15 M=1.0
C79 S3 VDD! 2.21760001854754E-15 M=1.0
C81 0 4 4.78055993364613E-15 M=1.0
C83 0 VRST 10.0695996747596E-15 M=1.0
C85 0 VINT 5.64007984060885E-15 M=1.0
C87 VDTBS 2 2.47071993296673E-15 M=1.0
C89 IAPBS5 0 2.25952010262363E-15 M=1.0
C91 IAPBS4 0 2.01391993495193E-15 M=1.0
C93 VOUT 0 2.55423992266484E-15 M=1.0
C95 IAPBS3 0 2.37815998413904E-15 M=1.0
C97 IAPBS2 0 2.04199992418636E-15 M=1.0
C99 IDET 1 2.24128009513745E-15 M=1.0
C101 VSMP 0 3.9943998561792E-15 M=1.0
C103 VDD! VRST 7.8609604177611E-15 M=1.0
C105 VDD! IAPBS1 2.03456001029415E-15 M=1.0
C107 NOUT VDD! 2.4076799293838E-15 M=1.0
C109 VAPRF VDD! 2.11119997487819E-15 M=1.0
C111 VNRST 0 5.39855983064407E-15 M=1.0
C113 VNRST VDD! 2.53839998303471E-15 M=1.0
C115 S3 0 8.20384020184259E-15 M=1.0
M117 VSMP VRST S5 VDD! CMOSP L=1.6E-6 W=9.6E-6 AD=38.3999984587824E-12
+AS=38.3999984587824E-12 PD=17.5999994098675E-6 PS=17.5999994098675E-6 M=1
M119 NOUT 13 VDD! VDD! CMOSP L=1.6E-6 W=12.8E-6 AD=51.1999991015255E-12
+AS=51.1999991015255E-12 PD=20.800000129384E-6 PS=20.800000129384E-6 M=1
M121 VOUT NOUT VDD! VDD! CMOSP L=1.6E-6 W=19.2E-6 AD=46.0800009260964E-12
+AS=76.7999969175648E-12 PD=4.80000016978011E-6 PS=27.1999997494277E-6 M=1
M123 VDD! NOUT VOUT VDD! CMOSP L=1.6E-6 W=19.2E-6 AD=76.7999969175648E-12
+AS=46.0800009260964E-12 PD=27.1999997494277E-6 PS=4.80000016978011E-6 M=1
M125 14 14 VDD! VDD! CMOSP L=1.6E-6 W=3.2E-6 AD=7.67999986522883E-12
+AS=12.7999997753814E-12 PD=4.80000016978011E-6 PS=11.1999997898238E-6 M=1
M127 1 1 14 VDD! CMOSP L=1.6E-6 W=3.2E-6 AD=12.7999997753814E-12
+AS=7.67999986522883E-12 PD=11.1999997898238E-6 PS=4.80000016978011E-6 M=1
M129 21 14 VDD! VDD! CMOSP L=1.6E-6 W=3.2E-6 AD=2.55999995507628E-12
+AS=12.7999997753814E-12 PD=1.60000001869776E-6 PS=11.1999997898238E-6 M=1
M131 2 1 21 VDD! CMOSP L=1.6E-6 W=3.2E-6 AD=12.7999997753814E-12
+AS=2.55999995507628E-12 PD=11.1999997898238E-6 PS=1.60000001869776E-6 M=1
M133 22 14 VDD! VDD! CMOSP L=1.6E-6 W=3.2E-6 AD=2.55999995507628E-12
+AS=12.7999997753814E-12 PD=1.60000001869776E-6 PS=11.1999997898238E-6 M=1
M135 4 1 22 VDD! CMOSP L=1.6E-6 W=3.2E-6 AD=12.7999997753814E-12
+AS=2.55999995507628E-12 PD=11.1999997898238E-6 PS=1.60000001869776E-6 M=1
M137 4 4 VDD! VDD! CMOSP L=1.6E-6 W=3.2E-6 AD=12.7999997753814E-12
+AS=12.7999997753814E-12 PD=11.1999997898238E-6 PS=11.1999997898238E-6 M=1
M139 S1B 4 VDD! VDD! CMOSP L=1.6E-6 W=3.2E-6 AD=12.7999997753814E-12
+AS=12.7999997753814E-12 PD=11.1999997898238E-6 PS=11.1999997898238E-6 M=1
M141 S2A S2A VDD! VDD! CMOSP L=1.6E-6 W=3.2E-6 AD=12.7999997753814E-12

185

+AS=12.7999997753814E-12 PD=11.1999997898238E-6 PS=11.1999997898238E-6 M=1
M143 S2B S2A VDD! VDD! CMOSP L=1.6E-6 W=3.2E-6 AD=12.7999997753814E-12
+AS=12.7999997753814E-12 PD=11.1999997898238E-6 PS=11.1999997898238E-6 M=1
M145 S3 S2B VDD! VDD! CMOSP L=1.6E-6 W=3.2E-6 AD=12.7999997753814E-12
+AS=12.7999997753814E-12 PD=11.1999997898238E-6 PS=11.1999997898238E-6 M=1
M147 IAPBS4 IAPBS4 VDD! VDD! CMOSP L=1.6E-6 W=3.2E-6
+AD=12.7999997753814E-12 AS=12.7999997753814E-12 PD=11.1999997898238E-6
+PS=11.1999997898238E-6 M=1
M149 S4 IAPBS4 VDD! VDD! CMOSP L=1.6E-6 W=3.2E-6 AD=12.7999997753814E-12
+AS=12.7999997753814E-12 PD=11.1999997898238E-6 PS=11.1999997898238E-6 M=1
M151 IAPBS5 IAPBS5 VDD! VDD! CMOSP L=1.6E-6 W=3.2E-6
+AD=12.7999997753814E-12 AS=12.7999997753814E-12 PD=11.1999997898238E-6
+PS=11.1999997898238E-6 M=1
M153 S5 IAPBS5 VDD! VDD! CMOSP L=1.6E-6 W=3.2E-6 AD=12.7999997753814E-12
+AS=12.7999997753814E-12 PD=11.1999997898238E-6 PS=11.1999997898238E-6 M=1
M155 9 9 VDD! VDD! CMOSP L=1.6E-6 W=3.2E-6 AD=12.7999997753814E-12
+AS=12.7999997753814E-12 PD=11.1999997898238E-6 PS=11.1999997898238E-6 M=1
M157 12 12 VDD! VDD! CMOSP L=1.6E-6 W=3.2E-6 AD=12.7999997753814E-12
+AS=12.7999997753814E-12 PD=11.1999997898238E-6 PS=11.1999997898238E-6 M=1
M159 13 12 VDD! VDD! CMOSP L=1.6E-6 W=3.2E-6 AD=12.7999997753814E-12
+AS=12.7999997753814E-12 PD=11.1999997898238E-6 PS=11.1999997898238E-6 M=1
M161 23 15 VDD! VDD! CMOSP L=1.6E-6 W=3.2E-6 AD=2.55999995507628E-12
+AS=12.7999997753814E-12 PD=1.60000001869776E-6 PS=11.1999997898238E-6 M=1
M163 VINT IITBS 23 VDD! CMOSP L=1.6E-6 W=3.2E-6 AD=12.7999997753814E-12
+AS=2.55999995507628E-12 PD=11.1999997898238E-6 PS=1.60000001869776E-6 M=1
M165 15 15 VDD! VDD! CMOSP L=1.6E-6 W=3.2E-6 AD=7.67999986522883E-12
+AS=12.7999997753814E-12 PD=4.80000016978011E-6 PS=11.1999997898238E-6 M=1
M167 IITBS IITBS 15 VDD! CMOSP L=1.6E-6 W=3.2E-6 AD=12.7999997753814E-12
+AS=7.67999986522883E-12 PD=11.1999997898238E-6 PS=4.80000016978011E-6 M=1
M169 S5 VNRST VSMP 0 CMOSN L=1.6E-6 W=4E-6 AD=15.9999999360672E-12
+AS=15.9999999360672E-12 PD=12.0000004244503E-6 PS=12.0000004244503E-6 M=1
M171 20 10 0 0 CMOSN L=1.6E-6 W=3.2E-6 AD=2.55999995507628E-12
+AS=12.7999997753814E-12 PD=1.60000001869776E-6 PS=11.1999997898238E-6 M=1
M173 NOUT 9 20 0 CMOSN L=1.6E-6 W=3.2E-6 AD=7.67999986522883E-12
+AS=2.55999995507628E-12 PD=4.80000016978011E-6 PS=1.60000001869776E-6 M=1
M175 VDD! VRST NOUT 0 CMOSN L=1.6E-6 W=3.2E-6 AD=12.7999997753814E-12
+AS=7.67999986522883E-12 PD=11.1999997898238E-6 PS=4.80000016978011E-6 M=1
M177 VOUT NOUT 0 0 CMOSN L=1.6E-6 W=8E-6 AD=19.1999992293912E-12
+AS=31.9999998721343E-12 PD=4.80000016978011E-6 PS=15.9999999596039E-6 M=1
M179 0 NOUT VOUT 0 CMOSN L=1.6E-6 W=8E-6 AD=31.9999998721343E-12
+AS=19.1999992293912E-12 PD=15.9999999596039E-6 PS=4.80000016978011E-6 M=1
M181 IDET 2 1 0 CMOSN L=1.6E-6 W=3.2E-6 AD=12.7999997753814E-12
+AS=12.7999997753814E-12 PD=11.1999997898238E-6 PS=11.1999997898238E-6 M=1
M183 VDTBS 2 2 0 CMOSN L=1.6E-6 W=3.2E-6 AD=12.7999997753814E-12
+AS=12.7999997753814E-12 PD=11.1999997898238E-6 PS=11.1999997898238E-6 M=1
M185 3 IAPBS1 IAPBS1 0 CMOSN L=1.6E-6 W=3.2E-6 AD=7.67999986522883E-12
+AS=12.7999997753814E-12 PD=4.80000016978011E-6 PS=11.1999997898238E-6 M=1
M187 0 3 3 0 CMOSN L=1.6E-6 W=3.2E-6 AD=12.7999997753814E-12
+AS=7.67999986522883E-12 PD=11.1999997898238E-6 PS=4.80000016978011E-6 M=1
M189 5 S3 4 0 CMOSN L=1.6E-6 W=3.2E-6 AD=7.67999986522883E-12
+AS=12.7999997753814E-12 PD=4.80000016978011E-6 PS=11.1999997898238E-6 M=1
M191 16 IAPBS1 5 0 CMOSN L=1.6E-6 W=3.2E-6 AD=2.55999995507628E-12
+AS=7.67999986522883E-12 PD=1.60000001869776E-6 PS=4.80000016978011E-6 M=1
M193 0 3 16 0 CMOSN L=1.6E-6 W=3.2E-6 AD=12.7999997753814E-12
+AS=2.55999995507628E-12 PD=11.1999997898238E-6 PS=1.60000001869776E-6 M=1

186

M195 5 VAPRF S1B 0 CMOSN L=1.6E-6 W=3.2E-6 AD=12.7999997753814E-12
+AS=12.7999997753814E-12 PD=11.1999997898238E-6 PS=11.1999997898238E-6 M=1
M197 6 IAPBS2 IAPBS2 0 CMOSN L=1.6E-6 W=3.2E-6 AD=7.67999986522883E-12
+AS=12.7999997753814E-12 PD=4.80000016978011E-6 PS=11.1999997898238E-6 M=1
M199 0 6 6 0 CMOSN L=1.6E-6 W=3.2E-6 AD=12.7999997753814E-12
+AS=7.67999986522883E-12 PD=11.1999997898238E-6 PS=4.80000016978011E-6 M=1
M201 7 S1B S2A 0 CMOSN L=1.6E-6 W=3.2E-6 AD=7.67999986522883E-12
+AS=12.7999997753814E-12 PD=4.80000016978011E-6 PS=11.1999997898238E-6 M=1
M203 17 IAPBS2 7 0 CMOSN L=1.6E-6 W=3.2E-6 AD=2.55999995507628E-12
+AS=7.67999986522883E-12 PD=1.60000001869776E-6 PS=4.80000016978011E-6 M=1
M205 0 6 17 0 CMOSN L=1.6E-6 W=3.2E-6 AD=12.7999997753814E-12
+AS=2.55999995507628E-12 PD=11.1999997898238E-6 PS=1.60000001869776E-6 M=1
M207 7 4 S2B 0 CMOSN L=1.6E-6 W=3.2E-6 AD=12.7999997753814E-12
+AS=12.7999997753814E-12 PD=11.1999997898238E-6 PS=11.1999997898238E-6 M=1
M209 18 IAPBS3 S3 0 CMOSN L=1.6E-6 W=3.2E-6 AD=2.55999995507628E-12
+AS=12.7999997753814E-12 PD=1.60000001869776E-6 PS=11.1999997898238E-6 M=1
M211 0 8 18 0 CMOSN L=1.6E-6 W=3.2E-6 AD=12.7999997753814E-12
+AS=2.55999995507628E-12 PD=11.1999997898238E-6 PS=1.60000001869776E-6 M=1
M213 8 IAPBS3 IAPBS3 0 CMOSN L=1.6E-6 W=3.2E-6 AD=7.67999986522883E-12
+AS=12.7999997753814E-12 PD=4.80000016978011E-6 PS=11.1999997898238E-6 M=1
M215 0 8 8 0 CMOSN L=1.6E-6 W=3.2E-6 AD=12.7999997753814E-12
+AS=7.67999986522883E-12 PD=11.1999997898238E-6 PS=4.80000016978011E-6 M=1
M217 0 S3 S4 0 CMOSN L=1.6E-6 W=3.2E-6 AD=12.7999997753814E-12
+AS=12.7999997753814E-12 PD=11.1999997898238E-6 PS=11.1999997898238E-6 M=1
M219 0 S4 S5 0 CMOSN L=1.6E-6 W=3.2E-6 AD=12.7999997753814E-12
+AS=12.7999997753814E-12 PD=11.1999997898238E-6 PS=11.1999997898238E-6 M=1
M221 10 9 9 0 CMOSN L=1.6E-6 W=3.2E-6 AD=7.67999986522883E-12
+AS=12.7999997753814E-12 PD=4.80000016978011E-6 PS=11.1999997898238E-6 M=1
M223 0 10 10 0 CMOSN L=1.6E-6 W=3.2E-6 AD=12.7999997753814E-12
+AS=7.67999986522883E-12 PD=11.1999997898238E-6 PS=4.80000016978011E-6 M=1
M225 19 9 11 0 CMOSN L=1.6E-6 W=3.2E-6 AD=2.55999995507628E-12
+AS=12.7999997753814E-12 PD=1.60000001869776E-6 PS=11.1999997898238E-6 M=1
M227 0 10 19 0 CMOSN L=1.6E-6 W=3.2E-6 AD=12.7999997753814E-12
+AS=2.55999995507628E-12 PD=11.1999997898238E-6 PS=1.60000001869776E-6 M=1
M229 11 VSMP 12 0 CMOSN L=1.6E-6 W=3.2E-6 AD=12.7999997753814E-12
+AS=12.7999997753814E-12 PD=11.1999997898238E-6 PS=11.1999997898238E-6 M=1
M231 11 VINT 13 0 CMOSN L=1.6E-6 W=3.2E-6 AD=12.7999997753814E-12
+AS=12.7999997753814E-12 PD=11.1999997898238E-6 PS=11.1999997898238E-6 M=1
M233 0 VRST VINT 0 CMOSN L=1.6E-6 W=3.2E-6 AD=12.7999997753814E-12
+AS=12.7999997753814E-12 PD=11.1999997898238E-6 PS=11.1999997898238E-6 M=1

187

Appendix H

PERL SCRIPTS

H.1 Spice Simulation Control Scripts

H.1.1 DC Sweep with Model Variation: AcqScriptModel.pl

#!/usr/bin/perl
$SimInp="CktDetInput.spice";
$DSMSimOut="DSM.lis";
$SSCSimOut="SSC.lis";
$DSMSimSrc="DSM.cir";
$SSCSimSrc="SSC.cir";
$ModelList="ModelList";
$ModelDir="CmosModel";
$DSMOutNameRoot="DSMSimOut";
$SSCOutNameRoot="SSCSimOut";
$DSMPatFile="DSM.header";
$SSCPatFile="SSC.header";
$IterNo=98;
$IterStep=10;
$IterOffset=10;
$Unit='n';
$x=0;
$Input=0;
$ModelCount=0;

open(MODEL, $ModelList) || die("Cannot CMOS model list file:$ModelList");
while ($ModelName=<MODEL>)
{
 chop $ModelName;
 system("cp $ModelDir/$ModelName ami150cmosmodel.spice");
 for ($x=0; $x<=$IterNo; $x++)
 {
 $Input=$x*$IterStep+$IterOffset;
 WriteSimInput();
 system("hspice $DSMSimSrc > $DSMSimOut");

188

 system("hspice $SSCSimSrc > $SSCSimOut");
 $ModelName=~s/\.spice//;
 $ModelName=~tr/a-z/A-Z/;
 $ModelIdx="M$ModelCount";
 $InputIdx="I$Input";
 $DSMCvrtStr="$DSMOutNameRoot$ModelIdx$InputIdx.out";
 $SSCCvrtStr="$SSCOutNameRoot$ModelIdx$InputIdx.out";
 system("CvrtSimOut.pl -d 2.5 -s 1 -p 0 -m $DSMPatFile < $DSMSimOut >
$DSMCvrtStr");
 system("CvrtSimOut.pl -d 2.5 -s 1 -p 0 -m $SSCPatFile < $SSCSimOut >
$SSCCvrtStr");
 }
 $ModelCount++;
}
close(MODEL);

sub WriteSimInput {
 open(FOUT, ">$SimInp") || die("Cannot write sim input file:$SimInp");
 print FOUT "IDet\tIDet\t0\t$Input$Unit\n";
 close(FOUT);
}

H.1.2 DC Sweep with Temperature Variation: AcqScriptTemp.pl

#!/usr/bin/perl
$SimInp="CktDetInput.spice";
$SimTemp="CktTemp.spice";
$DSMSimOut="DSM.lis";
$SSCSimOut="SSC.lis";
$DSMSimSrc="DSM.cir";
$SSCSimSrc="SSC.cir";
$ModelList="ModelList";
$ModelDir="CmosModel";
$DSMOutNameRoot="DSMSimOut";
$SSCOutNameRoot="SSCSimOut";
$DSMPatFile="DSM.header";
$SSCPatFile="SSC.header";
$IterNo=98;
$IterStep=10;
$IterOffset=10;
$Unit='n';
$x=0;
$Input=0;
#$ModelCount=0;
$CktTempOffset=0;
$CktTempNo=10;
$CktTempStep=10;

for ($y=0; $y<=$CktTempNo; $y++)
{

189

 $CktTemp=$CktTempOffset+$y*$CktTempStep;
 for ($x=0; $x<=$IterNo; $x++)
 {
 $Input=$x*$IterStep+$IterOffset;
 WriteSimInput();
 system("hspice $DSMSimSrc > $DSMSimOut");
 system("hspice $SSCSimSrc > $SSCSimOut");
 $ModelName=~s/\.spice//;
 $ModelName=~tr/a-z/A-Z/;
 $ModelIdx="T$CktTemp";
 $InputIdx="I$Input";
 $DSMCvrtStr="$DSMOutNameRoot$ModelIdx$InputIdx.out";
 $SSCCvrtStr="$SSCOutNameRoot$ModelIdx$InputIdx.out";
 system("CvrtSimOut.pl -d 2.5 -s 1 -p 0 -m $DSMPatFile < $DSMSimOut >
$DSMCvrtStr");
 system("CvrtSimOut.pl -d 2.5 -s 1 -p 0 -m $SSCPatFile < $SSCSimOut >
$SSCCvrtStr");
 }
}

sub WriteSimInput {
 open(FOUT, ">$SimInp") || die("Cannot write sim input file:$SimInp");
 print FOUT "IDet\tIDet\t0\t$Input$Unit\n";
 close(FOUT);
 open(FOUT, ">$SimTemp") || die("Cannot write sim input file:$SimInp");
 print FOUT ".temp\t$CktTemp\n";
 close(FOUT);
}

H.2 Spice Data Manipulation Scripts

H.2.1 SPICE Analog Data Extractor: ExtSimOut.pl

#!/usr/bin/perl
$Mode=0;
$Step=1;
$Phase=0;
ArgvProcess();
$Count=$Step-$Phase;
while ($Line=<STDIN>) {
 if($Mode == -1) {
 if($Line !~ /^\s*\d/)
 $Mode=0;
 close(FFILTER);
 $SimCount++;
 }
 else {
 if($Count >= $Step) {

190

 $Count=0;
 }
 if($Count==0) {
 $Line =~ s/k/e3/g;
 $Line =~ s/x/e6/g;
 $Line =~ s/m/e-3/g;
 $Line =~ s/u/e-6/g;
 $Line =~ s/n/e-9/g;
 $Line =~ s/p/e-12/g;
 $Line =~ s/f/e-15/g;
 print "$Line";
 }
 $Count++;
 }
 }
 if($Mode ==0 && $Line eq "x\n") {
 $Mode++;
 }
 if($Mode > 0) {
 $Mode++;
 if($Mode>4) {
 $Mode=-1;
 }
 }
}

sub ArgvProcess {
 for($k=0; $k<($#ARGV-1); $k++) {
 if($ARGV[$k] eq '-s') {$Step="$ARGV[$k+1]";}
 if($ARGV[$k] eq '-p') {$Phase="$ARGV[$k+1]";}
 if($ARGV[$k] eq '-m') {$SearchPatternFile="$ARGV[$k+1]";}
 if($ARGV[$k] eq '-h') {
 print "Hspice lis data extractor\n";
 print "-s : Step\n";
 print "-p : Phase shift in integer\n";
 print "-h : This help file\n";
 }
 }
}

191

Appendix I

LABVIEW CODES FOR DATA ACQUISITION

The data acquisition hardware for ∆Σ oversampling ADC chip was National

Instrument PCI-DIO-32HS data acquisition unit [61]. To automate the data acquisition

process, a set of LabView [134] codes were programmed. Figure 106 shows the designed

main control panel and Figure 107 shows the program structure. The program control

flow is from top to bottom. There are 32-bits inputs and outputs in the PCI-DIO-32HS

and a group of 8-bits makes a port. Each port can be an output or input port, though the

ports 0 and 1 have a common input or output setting and the ports 2 and 3 have a

common setting. In the code, ports 0 and 1 are input ports and ports 2 and 3 are output

ports. The output ports send control signal according to the array addressing scheme by

selecting a group of photo detector exclusively. Input data is collected and counted to get

a first-order filtered or comb filtered estimation. The processed data is stored in the

designated storage device with a time stamp for the following digital signal processing.

192

Figure 106: Main panel of data acquisition code

Figure 107: LabView code structure

193

I.1 LabView Codes

Figure 108: Daq0R2WLoop.vi

Figure 109: Daq0r2WControl.vi

194

Figure 110: Daq0RCountProc.vi

Figure 111: Daq0RDataProc.vi

195

Figure 112: Daq0Read.vi

Figure 113: Daq2Write.vi

196

Figure 114: DaqArrayU32toDBL.vi

Figure 115: DaqFileWrite.vi

197

REFERENCES

[1] (2004) The Bio-Optoelectronic Sensor System. [Online]. Available:
http://www.micro.uiuc.edu/boss/

[2] N. F. Hartman, "Optical sensing apparatus and method," U.S. Patent 4515430, July 10,
1990.

[3] D. P. Campbell, et al., "Optical system-on-a-chip for chemical and biochemical
sensing: the chemistry," SPIE Proceedings, vol. 3540, pp. 153-161, 1998.

[4] D. P. Campbell, et al., "Reversible integrated optical evanescent field biosensor using
chemical amplification for added sensitivity," SPIE Proceedings, vol. 3253, pp. 20-26,
1998.

[5] N. F. Hartman, et al., "Rapid response biosensor for detection and identification of
common foodborne pathogens," SPIE Proceedings, vol. 2345, pp. 128-137, 1994.

[6] N. F. Hartman, et al., "Optical system-on-a-chip for chemical and biochemical
sensing: the platform," SPIE Proceedings, vol. 3537, pp. 302-309, 1999.

[7] S. Cho, et al., "Polymer waveguide optical interconnections on si cmos circuits," in
Tech. Dig. Conference of Lasers and Electro-Optics, 2002.

[8] (2004) MOSIS Website. [Online]. Available: http://www.mosis.org/

[9] O. B. Milgrome, et al., "A monolithic CMOS 16 channel, 12 bit, 10 microsecond
analog to digital converter integrated circuit," Nuclear Science, IEEE Transactions on,
vol. 40, pp. 721-723, 1993.

[10] W. R. Krenik, et al., "A precision optical metering system for medical
instrumentation," in Custom Integrated Circuits Conference, 1989., Proceedings of the
IEEE 1989, 1989.

[11] P. E. Allen, et al., CMOS analog circuit design, 2nd ed. New York: Oxford
University Press, 2002.

[12] R. J. Baker, et al., CMOS circuit design, layout, and simulation. New York: IEEE
Press, 1998.

198

[13] R. J. Baker, CMOS : mixed-signal circuit design. New York: Wiley, 2002.

[14] M. J. Demler, High-speed analog-to-digital conversion. San Diego: Academic Press,
1991.

[15] R. J. v. d. Plassche, CMOS integrated analog-to-digital and digital-to-analog
converters, 2nd ed. Boston: Kluwer Academic Publishers, 2003.

[16] M. Burns, et al., An introduction to mixed-signal IC test and measurement. New
York: Oxford University Press, 2001.

[17] D. Johns, et al., Analog integrated circuit design. New York: John Wiley & Sons,
1997.

[18] M. P. Flynn, et al., "A 400-Msample/s, 6-b CMOS folding and interpolating ADC,"
Solid-State Circuits, IEEE Journal of, vol. 33, pp. 1932-1938, 1998.

[19] S. Tsukamoto, et al., "A CMOS 6-b, 400-MSample/s ADC with error correction,"
Solid-State Circuits, IEEE Journal of, vol. 33, pp. 1939-1947, 1998.

[20] M. J. M. Pelgrom, et al., "A 25-Ms/s 8-bit CMOS A/D converter for embedded
application," Solid-State Circuits, IEEE Journal of, vol. 29, pp. 879-886, 1994.

[21] (2004) Cirrus Logic A/D Converters. [Online]. Available: http://www.cirrus.com

[22] C. C. Cutler, "Transmission system employing quantization," U.S. Patent 2927962,
March 8, 1960.

[23] A. Handkiewicz, Mixed-signal systems : a guide to CMOS circuit design.
Piscataway, NJ: IEEE Press : Wiley, 2002.

[24] B. Razavi, Design of analog CMOS integrated circuits. Boston, MA: McGraw-Hill,
2001.

[25] M. Gustavsson, et al., CMOS data coverters for communications. Boston: Kluwer
Academic, 2000.

[26] S. R. Norsworthy, et al., Delta-sigma data converters : theory, design, and
simulation. New York: IEEE Press, 1997.

[27] B. Razavi, Principles of data conversion system design. New York: IEEE Press,
1995.

[28] S. Hein, et al., Sigma Delta modulators : nonlinear decoding algorithms and
stability analysis. Boston: Kluwer Academic Publishers, 1993.

199

[29] J. C. Candy, et al., Oversampling delta-sigma data converters : theory, design, and
simulation. Piscataway, NJ: IEEE Press, 1992.

[30] R. Gregorian, et al., Analog MOS integrated circuits for signal processing. New
York: Wiley, 1986.

[31] N. T. Thao, et al., "Deterministic analysis of oversampled A/D conversion and
decoding improvement based on consistent estimates," Signal Processing, IEEE
Transactions on [see also Acoustics, Speech, and Signal Processing, IEEE
Transactions on], vol. 42, pp. 519-531, 1994.

[32] A. R. Calderbank, et al., "The pros and cons of democracy," Information Theory,
IEEE Transactions on, vol. 48, pp. 1721-1725, 2002.

[33] (2004) IEEE Xplore. [Online]. Available: http://ieeexplore.ieee.org

[34] E. Dallago, et al., "Comparison between PWM and sigma-delta modulation in a
power factor correction system," in Power Electronics Specialists Conference, 2002.
pesc 02. 2002 IEEE 33rd Annual, 2002.

[35] R. van de Plassche, "A sigma-delta modulator as an A/D converter," Circuits and
Systems, IEEE Transactions on, vol. 25, pp. 510-514, 1978.

[36] J. Nieznanski, et al., "Comparison of vector sigma-delta modulation and space-
vector PWM," in Proc. 26th Annual Conference of the IEEE Industrial Electronics
Society, 2000.

[37] C. Xu, et al., "A highly integrated CMOS image sensor architecture for low voltage
applications with deep submicron process," in Proc. 2002 IEEE ISCAS, 2002.

[38] L. A. Singer, et al., "A 14-bit 10-MHz calibration-free CMOS pipelined A/D
converter," in VLSI Circuits, 1996. Digest of Technical Papers., 1996 Symposium on,
1996.

[39] K. Nakamura, et al., "An 85 mW, 10 b, 40 Msample/s CMOS parallel-pipelined
ADC," Solid-State Circuits, IEEE Journal of, vol. 30, pp. 173-183, 1995.

[40] S. H. Lewis, et al., "A pipelined 5-Msample/s 9-bit analog-to-digital converter,"
Solid-State Circuits, IEEE Journal of, vol. 22, pp. 954-961, 1987.

[41] M. Gottardi, et al., "A CCD/CMOS image sensor array with integrated A/D
conversion," in Proc. 1997 IEEE ISCAS, 1997.

[42] W. Chen, et al., "Integrated 1.2 µm CMOS photodiodes, transimpedance amplifier,
12 bits A/D converter, and DSP interface for microinstrument applications," in

200

Circuits and Systems, 1999. ISCAS '99. Proceedings of the 1999 IEEE International
Symposium on, 1999.

[43] D. G. Gata, et al., "A 1.1-V 270-µA mixed-signal hearing aid chip," Solid-State
Circuits, IEEE Journal of, vol. 37, pp. 1670-1678, 2002.

[44] C. B. Wang, "A 20-bit 25-kHz delta-sigma A/D converter utilizing a frequency-
shaped chopper stabilization scheme," Solid-State Circuits, IEEE Journal of, vol. 36,
pp. 566-569, 2001.

[45] P. C. Maulik, et al., "A 16-bit 250-kHz delta-sigma modulator and decimation
filter," Solid-State Circuits, IEEE Journal of, vol. 35, pp. 458-467, 2000.

[46] W. H. Press, Numerical recipes in C : the art of scientific computing, 2nd ed.
Cambridge [Cambridgeshire] ; New York: Cambridge University Press, 2002.

[47] B. Razavi, Design of integrated circuits for optical communications. Boston:
McGraw-Hill, 2003.

[48] L. G. McIlrath, "A robust O(N log n) algorithm for optimal decoding of first-order
Σ∆ sequences," Signal Processing, IEEE Transactions on [see also Acoustics, Speech,
and Signal Processing, IEEE Transactions on], vol. 50, pp. 1942-1950, 2002.

[49] S. Hein, et al., "Optimal decoding for data acquisition applications of sigma delta
modulators," Signal Processing, IEEE Transactions on [see also Acoustics, Speech,
and Signal Processing, IEEE Transactions on], vol. 41, pp. 602-616, 1993.

[50] R. M. Gray, "Spectral analysis of quantization noise in a single-loop sigma-delta
modulator with DC input," Communications, IEEE Transactions on, vol. 37, pp. 588-
599, 1989.

[51] J. Candy, "Decimation for Sigma Delta Modulation," Communications, IEEE
Transactions on [legacy, pre - 1988], vol. 34, pp. 72-76, 1986.

[52] S. Chu, et al., "Multirate filter designs using comb filters," Circuits and Systems,
IEEE Transactions on, vol. 31, pp. 913-924, 1984.

[53] F. Dachselt, et al., "Rational cycle decoding algorithm for the first-order delta-sigma
modulator," in Circuits and Systems, 2001. ISCAS 2001. The 2001 IEEE International
Symposium on, 2001.

[54] M. R. Sherkat, et al., "A novel decoder for Σ∆ modulator providing both high
resolution and low latency," in Circuits and Systems, 1999. ISCAS '99. Proceedings of
the 1999 IEEE International Symposium on, 1999.

201

[55] R. W. Sandage, et al., "Producing phototransistors in a standard digital CMOS
technology," in Circuits and Systems, 1996. ISCAS '96., 'Connecting the World'.,
1996 IEEE International Symposium on, 1996.

[56] (2004) HSPICE. [Online]. Available: http://www.synopsys.com/

[57] M. Ortmanns, et al., "Fundamental limits of jitter insensitivity in discrete and
continuous-time sigma delta modulators," in Proc. 2003 IEEE ISCAS, 2003.

[58] O. Oliaei, et al., "Jitter effects in continuous-time Σ∆ modulators with delayed
return-to-zero feedback," in IEEE 1998 International Conference on Electronics,
Circuits and Systems, 1998.

[59] J. A. Cherry, et al., "Clock jitter and quantizer metastability in continuous-time
delta-sigma modulators," Circuits and Systems II: Analog and Digital Signal
Processing, IEEE Transactions on [see also Circuits and Systems II: Express Briefs,
IEEE Transactions on], vol. 46, pp. 661-676, 1999.

[60] (2004) Tektronix. [Online]. Available: http://www.tektronix.com

[61] (2004) National Instruments. [Online]. Available: http://www.ni.com/

[62] (2004) Keithley. [Online]. Available: http://www.keithley.com/

[63] J. Nakamura, et al., "On-focal-plane signal processing for current-mode active pixel
sensors," Electron Devices, IEEE Transactions on, vol. 44, pp. 1747-1758, 1997.

[64] (2004) Newport. [Online]. Available: http://www.newport.com/

[65] C. D. Motchenbacher, et al., Low-noise electronic system design. New York: J.
Wiley & Sons, 1993.

[66] A. A. Dorrington, et al., "A simple microcontroller based digital lock-in amplifier
for the detection of low level optical signals," in IEEE International Workshop on
Electronic Design, Test and Applications, 2002.

[67] A. Mandelis, "Signal-to-noise ratio in lock-in amplifier synchronous detection: A
generalized communications system approach with applications to frequency, time,
and hybrid (rate window) photothermal measurements," Rev. Sci. Instrum., vol. 65, pp.
3309-3323, 1994.

[68] W. B. Kuhn, et al., "Dynamic range performance of on-chip RF bandpass filters,"
Circuits and Systems II: Analog and Digital Signal Processing, IEEE Transactions on
[see also Circuits and Systems II: Express Briefs, IEEE Transactions on], vol. 50, pp.
685-694, 2003.

202

[69] A. I. Hussein, et al., "Bandpass Σ∆ modulator employing undersampling of RF
signals for wireless communication," Circuits and Systems II: Analog and Digital
Signal Processing, IEEE Transactions on [see also Circuits and Systems II: Express
Briefs, IEEE Transactions on], vol. 47, pp. 614-620, 2000.

[70] C. H. Leong, et al., "An effective implementation of high-order bandpass sigma-
delta modulators for high speed D/A applications," in Proc. 1997 IEEE ISCAS, 1997.

[71] I. J. O'Connell, et al., "A high pass switched capacitor Σ∆ modulator," in 9th IEEE
International Conference on Electronics, Circuits and Systems, 2002.

[72] A. Tabatabaei, et al., "A wideband bandpass sigma-delta modulator for wireless
applications," in Dig. Tech. Papers 1999 Symposium on VLSI Circuits, 1999.

[73] P. Ju, et al., "A 22-kHz multibit switched-capacitor sigma-delta D/A converter with
92 dB dynamic range," Solid-State Circuits, IEEE Journal of, vol. 30, pp. 1316-1325,
1995.

[74] I. Galton, "Delta-sigma data conversion in wireless transceivers," Microwave Theory
and Techniques, IEEE Transactions on, vol. 50, pp. 302-315, 2002.

[75] E. Owen, "The elimination of offset errors in dual-slope analog-to-digital
converters," Circuits and Systems, IEEE Transactions on, vol. 27, pp. 137-141, 1980.

[76] I. Wold, "Offset error compensation for integrating analog-to-digital converter," U.S.
Patent 3942173, March 2, 1976.

[77] Y. Manoli, "A self-calibration method for fast high-resolution A/D and D/A
converters," Solid-State Circuits, IEEE Journal of, vol. 24, pp. 603-608, 1989.

[78] E. Raisanen-Ruotsalainen, et al., "An integrated time-to-digital converter with 30-ps
single-shot precision," Solid-State Circuits, IEEE Journal of, vol. 35, pp. 1507-1510,
2000.

[79] H. Schmid, Electronic analog/digital conversions. New York,: Van Nostrand
Reinhold Co., 1970.

[80] T. Hornak, et al., "A high precision component-tolerant A/D convertor," Solid-State
Circuits, IEEE Journal of, vol. 10, pp. 386-391, 1975.

[81] R. H. McCharles, et al., "An algorithmic analog-to-digital converter," in 1977 IEEE
ISSCC Dig. Tech. Papers, 1977.

[82] R. Webb, et al., "A 12b A/D converter," in Solid-State Circuits Conference. Digest
of Technical Papers. 1981 IEEE International, 1981.

203

[83] P. W. Li, et al., "A ratio-independent algorithmic analog-to-digital conversion
technique," Solid-State Circuits, IEEE Journal of, vol. 19, pp. 828-836, 1984.

[84] H.-S. Lee, et al., "A self-calibrating 15 bit CMOS A/D converter," Solid-State
Circuits, IEEE Journal of, vol. 19, pp. 813-819, 1984.

[85] R. V. d. Plaasche, "Dynamic element matching for high accuracy D/A converters,"
in 1976 IEEE ISSCC Dig. Tech. Papers, 1976.

[86] G. R. Ritchie, "Higher order interpolation analog to digital converters," University of
Pennsylvania, 1977.

[87] H. A. Spang, et al., "Reduction of quantizing noise by use of feedback," IRE Trans.
on Commun. Syst., pp. 373-380, 1962.

[88] F. d. Jager, "Delta modulation - a method of PCM transmission using the one unit
code," Philips Res. Rep., vol. 7, pp. 442-466, 1952.

[89] H. Inose, et al., "A telemetering system by code modulation - ∆Σ modulation," IRE
Trans. Space Electron. Telemetry, vol. SET-8, pp. 204-209, 1962.

[90] S. S. Haykin, Communication systems, 4th ed. New York: Wiley, 2001.

[91] J. Candy, et al., "The Structure of Quantization Noise from Sigma-Delta
Modulation," Communications, IEEE Transactions on [legacy, pre - 1988], vol. 29,
pp. 1316-1323, 1981.

[92] R. Gray, "Oversampled Sigma-Delta Modulation," Communications, IEEE
Transactions on [legacy, pre - 1988], vol. 35, pp. 481-489, 1987.

[93] R. M. Gray, "Quantization noise spectra," Information Theory, IEEE Transactions
on, vol. 36, pp. 1220-1244, 1990.

[94] A. V. Oppenheim, et al., Discrete-time signal processing. Englewood Cliffs, N.J.:
Prentice Hall, 1989.

[95] A. V. Oppenheim, et al., Signals & systems, 2nd ed. Upper Saddle River, N.J.:
Prentice Hall, 1997.

[96] L. Longo, et al., "A 13 bit ISDN-band Oversampled ADC using Two-Stage Third
Order Noise Shaping," in Proc. IEEE 1988 Conference on Custom Integrated Circuits,
1988.

[97] K. Matsumoto, et al., "An 18b Oversampling A/D Converter for Digital Audio," in
Solid-State Circuits Conference, 1988. Digest of Technical Papers. ISSCC. 1988 IEEE
International, 1988.

204

[98] Y. Matsuya, et al., "A 16-bit oversampling A-to-D conversion technology using
triple-integration noise shaping," Solid-State Circuits, IEEE Journal of, vol. 22, pp.
921-929, 1987.

[99] S. R. Norsworthy, et al., "A 14-bit 80-kHz sigma-delta A/D converter: modeling,
design and performance evaluation," Solid-State Circuits, IEEE Journal of, vol. 24, pp.
256-266, 1989.

[100] Y. Geerts, et al., "A high-performance multibit ∆Σ CMOS ADC," Solid-State
Circuits, IEEE Journal of, vol. 35, pp. 1829-1840, 2000.

[101] M. R. Miller, et al., "A multibit sigma-delta ADC for multimode receivers," Solid-
State Circuits, IEEE Journal of, vol. 38, pp. 475-482, 2003.

[102] Y. Joo, et al., "Smart CMOS focal plane arrays: a Si CMOS detector array and
sigma-delta analog-to-digital converter imaging system," Selected Topics in Quantum
Electronics, IEEE Journal of, vol. 5, pp. 296-305, 1999.

[103] Y. Joo, et al., "Compact current input oversampling modulator design for a scalable
high frame rate focal plane arrays," in Proc. 2000 IEEE ISCAS, 2000.

[104] Y. Botteron, et al., "An investigation of bandpass sigma-delta A/D converters," in
Proc. 40th IEEE Midwest Symposium on Circuits and Systems, 1997.

[105] T. Salo, et al., "A 80-MHz bandpass ∆Σ modulator for a 100-MHz IF receiver,"
Solid-State Circuits, IEEE Journal of, vol. 37, pp. 798-808, 2002.

[106] T. Ueno, et al., "A fourth-order bandpass ∆Σ modulator using second-order
bandpass noise-shaping dynamic element matching," Solid-State Circuits, IEEE
Journal of, vol. 37, pp. 809-816, 2002.

[107] V. T. Nguyen, et al., "Advantages of high-pass ∆Σ modulators in interleaved ∆Σ
analog to digital converter," in Proc. 45th IEEE Midwest Symposium on Circuits and
Systems, 2002.

[108] A. K. Ong, et al., "A two-path bandpass Σ∆ modulator for digital IF extraction at
20 MHz," Solid-State Circuits, IEEE Journal of, vol. 32, pp. 1920-1934, 1997.

[109] Y.-H. Chang, et al., "Chopper-stabilized sigma-delta modulator," in Proc. 1993
IEEE ISCAS, 1993.

[110] S. Hein, et al., "On the stability of sigma delta modulators," Signal Processing,
IEEE Transactions on [see also Acoustics, Speech, and Signal Processing, IEEE
Transactions on], vol. 41, pp. 2322-2348, 1993.

205

[111] J. Candy, "A Use of Double Integration in Sigma Delta Modulation,"
Communications, IEEE Transactions on [legacy, pre - 1988], vol. 33, pp. 249-258,
1985.

[112] K. C.-H. Chao, et al., "A higher order topology for interpolative modulators for
oversampling A/D converters," Circuits and Systems, IEEE Transactions on, vol. 37,
pp. 309-318, 1990.

[113] S. Ardalan, et al., "An analysis of nonlinear behavior in delta-sigma modulators,"
Circuits and Systems, IEEE Transactions on, vol. 34, pp. 593-603, 1987.

[114] T. Ritoniemi, et al., "Design of stable high order 1-bit sigma-delta modulators," in
Circuits and Systems, 1990., IEEE International Symposium on, 1990.

[115] W. Chou, et al., "Multistage sigma-delta modulation," Information Theory, IEEE
Transactions on, vol. 35, pp. 784-796, 1989.

[116] A. Hirota, et al., "A novel delta-sigma modulated DC-DC power converter
operating under DC ripple voltage," in Proc. 25th Annual Conference of the IEEE
Industrial Electronics Society, 1999.

[117] A. Eshraghi, et al., "A time-interleaved parallel ∆Σ A/D converter," Circuits and
Systems II: Analog and Digital Signal Processing, IEEE Transactions on [see also
Circuits and Systems II: Express Briefs, IEEE Transactions on], vol. 50, pp. 118-129,
2003.

[118] D. P. Scholnik, et al., "Space-time vector delta-sigma modulation," in Proc. 2002
IEEE ISCAS, 2002.

[119] R. Khoini-Poorfard, et al., "Time-interleaved oversampling A/D converters: theory
and practice," Circuits and Systems II: Analog and Digital Signal Processing, IEEE
Transactions on [see also Circuits and Systems II: Express Briefs, IEEE Transactions
on], vol. 44, pp. 634-645, 1997.

[120] I. Galton, et al., "Oversampling parallel delta-sigma modulator A/D conversion,"
Circuits and Systems II: Analog and Digital Signal Processing, IEEE Transactions on
[see also Circuits and Systems II: Express Briefs, IEEE Transactions on], vol. 43, pp.
801-810, 1996.

[121] E. Roza, "Poly-phase sigma-delta modulation," Circuits and Systems II: Analog
and Digital Signal Processing, IEEE Transactions on [see also Circuits and Systems
II: Express Briefs, IEEE Transactions on], vol. 44, pp. 915-923, 1997.

[122] E. Dijkstra, et al., "On the use of modulo arithmetic comb filters in sigma delta
modulators," in Proc. 1988 IEEE ICASSP, 1988.

206

[123] L. Luh, et al., "A High-Speed Digital Comb Filter for Sigma-Delta Analog-to-
Digital Conversion," in Proc. 42nd IEEE Midwest Symposium on Circuits and
Systems, 2000.

[124] D. D. Kim, et al., "A 1.4G Samples/sec Comb Filter Design for Decimation of
Sigma-Delta Modulator Output," in Proc. 2003 IEEE ISCAS, 2003.

[125] P. Steiner, et al., "A framework for analysis of high-order sigma-delta modulators,"
Circuits and Systems II: Analog and Digital Signal Processing, IEEE Transactions on
[see also Circuits and Systems II: Express Briefs, IEEE Transactions on], vol. 44, pp.
1-10, 1997.

[126] H. Wang, "A geometric view of Σ∆ modulations," Circuits and Systems II: Analog
and Digital Signal Processing, IEEE Transactions on [see also Circuits and Systems
II: Express Briefs, IEEE Transactions on], vol. 39, pp. 402-405, 1992.

[127] A. K. Gupta, et al., "Viterbi decoding and Σ∆ modulation," in Information Theory,
2002. Proceedings. 2002 IEEE International Symposium on, 2002.

[128] E. Kreyszig, Advanced engineering mathematics, 7th ed. New York: Wiley, 1993.

[129] R. B. Ash, Information theory. New York,: Interscience Publishers, 1965.

[130] J. R. Pierce, An introduction to information theory : symbols, signals & noise, 2nd,
rev. ed. New York: Dover Publications, 1980.

[131] F. M. Reza, An introduction to information theory. New York: Dover, 1994.

[132] C. E. Shannon, "A mathematical theory of communcication," Bell System Tech. J.,
vol. 27, pp. 379-324, 623-656, 1948.

[133] (2004) MOSIS AMI Si-CMOS Models. [Online]. Available:
http://www.mosis.org/Technical/Testdata/ami-abn-prm.html

[134] (2004) LabView, National Instruments. [Online]. Available:
http://www.ni.com/labview/

207

VITA

Daeik D. Kim was born in Seoul, Republic of Korea in 1973. Having completed

Paichai middle and high schools in 1989 and 1992 respectively, he was admitted to the

School of Electrical Engineering, Seoul National University.

During his collegiate study, he was involved in an evangelical movement as a

leader of Campus Crusade for Christ. He volunteered for military duty in 1995 and was

deployed to Joint Security Area under the United Nations Command Security Battalion,

which is located at the demilitarized zone between Republic of Korea and North Korea,

until he was dismissed as a sergeant in 1997. After he received BS degree at Seoul

National University in 1999, he was engaged with EduMTek Co., MGB Endoscopy Co.

Ltd., and Bitnuri Co. as a freelancer engineer.

He began his graduate study with major advisor Professor Martin A. Brooke at the

School of Electrical and Computer Engineering, Georgia Institute of Technology in 2000,

and received MS and PhD degree in 2002 and 2004 with electronic design and

application major and computer science minor. During graduate study, he was selected

for Information and Telecommunication National Scholarship Program, provided by

Ministry of Information and Communication, Republic of Korea. After completing his

graduate studies, he began his career as a research engineer at the Department of

Electrical and Computer Engineering, Duke University in 2004.

His research interest includes mixed-signal processing system design, and system-

on-a-chip integration of heterogeneous function blocks for sensor and communication

applications.

