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SUMMARY 

 

This dissertation presents a comprehensive design and analysis framework for 

system-on-a-chip analog-to-digital conversion design. The design encompasses a broad 

class of systems, which take advantage of system-on-a-chip complexity. This class is 

exemplified by an interferometric photodetector array based bio-optoelectronic sensor 

that is built and tested as part of the reported work. 

While there have been many discussions of the technical details of individual 

analog-to-digital converter (ADC) schemes in the literature, the importance of the analog 

front-end as a pre-processor for a data converter and the generalized analysis including 

converter encoding and decoding functions have not previously been investigated 

thoroughly, and these are key elements in the choice of converter designs for low-noise 

systems such as bio-optoelectronic sensors. 

Frequency domain analog front-end models of ADCs are developed to enable the 

architectural modeling of ADCs. The proposed models can be used for ADC statistically 

worst-case performance estimation, with stationary random process assumptions on input 

signals. These models prove able to reveal the architectural advantages of a specific 

analog-to-digital converter schemes quantitatively, allowing meaningful comparisons 

between converter designs. 



 

xiii 

The modeling of analog-to-digital converters as communication channels and the 

ADC functional analysis as encoders and decoders are developed. This work shows that 

analog-to-digital converters can be categorized as either a decoder-centered design or an 

encoder-centered design. This perspective helps to show the advantages of nonlinear 

decoding schemes for oversampling noise-shaping data converters, and a new nonlinear 

decoding algorithm is suggested to explore the optimum solution of the decoding 

problem. 

A case study of decoder-centered and encoder-centered data converter designs is 

presented by applying the proposed theoretical framework. The robustness and flexibility 

of the resulting analog-to-digital converters are demonstrated and compared. The 

electrical and optical sensitivity measurements of a fabricated oversampling noise 

shaping analog-to-digital converter circuit are provided, and a sensor system-on-a-chip 

using these ADCs with integrated interferometric waveguides for bio-optoelectronic 

sensing is demonstrated. 
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INTRODUCTION 

 

This dissertation describes a comprehensive design and analysis framework for 

system-on-a-chip analog-to-digital conversion design. The design encompasses a broad 

class of systems that take advantage of system-on-a-chip complexity. This class is 

exemplified by an interferometric photodetector array based bio-optoelectronic sensor 

that is built and tested as part of the reported work. 

It is assumed that this class of sensors could use quite large arrays of sensors to 

sense inputs signals; for example, linear or two-dimensional photodetector arrays or 

hundreds of parallel sensors ganged to improve selectivity. Furthermore, these types of 

sensors could require very sensitive front-ends in the presence of possibly wide-band 

noise from on-board digital signal processing (DSP) or data communication interfaces; 

for example, weak photodetector signals of a few nano amperes (nA) might be important. 

In addition, most of these sensors would have relatively low input bandwidths related to 

physical world time scales, and may have large amounts of signal processing performed 

on the data after it is recorded. For example, many chemical sensors take seconds to 

minutes to operate, and there is plenty of time for even slow signal processors to perform 

computations on the raw measured data. Finally, because of the slow speed of some of 

the sensor input signals, the sensor would need to complete the sensing task expeditiously, 

not wasting sensor signal time. This will lead to a need for some parallel hardware at 
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each sensor interface, which in turn leads to a constraint on the size of the direct sensor 

interface circuitry. 

This last constraint, of expeditious sensor operation, will be discussed in Chapter 

1.  It will be shown that for the case where there are many parallel weak sensor input 

signals placing some of the sensor analog-to-digital conversion (ADC) interface in 

parallel at each sensor location is very desirable, from sensing time standpoint, and from 

a sensitivity standpoint. 

Two aspects of ADC modeling, linear frequency domain analysis and nonlinear 

time domain analysis, will be developed to provide theoretical analysis tools for 

comparison purposes. In Chapter 2, frequency domain modeling of ADC analog front-

ends will be examined and it will be used to produce an architectural comparison of 

ADCs. The analysis will emphasize the importance of data converter pre-processing as a 

limiting factor in SoC ADC design.  

Chapter 3 is an inquiry into the time domain behavior of the ADC process that 

enables a performance comparison using a newly discovered ∆Σ decoding algorithm. The 

trade-off between performance and complexity explored in this chapter is useful to 

determine what would be an optimal combination of ADC encoding and decoding 

schemes.  

In this chapter, it will be shown that there are two separately developed 

approaches to design data converters, an encoder-centered method and a decoder-

centered method. The encoder-centered method has its emphasis on effective ways to 
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transform inputs to preserve important characteristics and to enhance conversion 

efficiency. The intermediate results from the encoder-centered approach are not simple to 

understand as they are not in formats resembling the desired output, and, in fact, this 

approach requires complex algorithms to produce the desired output. The decoder-

centered method takes a top-down approach to solve the data conversion problem. This 

method concentrates on the final result of conversion and intermediate processing 

outcomes are therefore similar to the final form of the data.  

A good example of the class of encoding-centered converters is the well-known 

delta-sigma (∆Σ) encoder and decoder (CODEC), whereas traditional Nyquist sampling 

conversion schemes, such as slope-integrating ADCs, iterative algorithmic ADCs, and 

flash ADCs, are regarded as decoder-centered methods. The comparison of two types of 

ADCs will lead to several important modeling and analysis techniques, which will be 

useful as design criteria. 

In Chapter 4, ∆Σ ADCs and single-slope ADCs are taken as examples of decoder- 

and encoder-centered data converters for a comparison study of sensor readout system 

ADCs. Designs of these two ADCs are proposed and compared through the provided 

theories and practical considerations. ADC robustness and flexibility are examined with 

model variations, temperature dependency, clock jitter, etc. A fabricated SoC sensor 

ADC is demonstrated and its performance is measured. 
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The entire thesis provides a qualitative and quantitative analysis that connects 

theory and application. It is hoped that this work is not only valuable as an ADC 

comparison and evaluation methodology but also as an ADC design framework. 
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Chapter 1   

BACKGROUND 

 

In this chapter it is determined that oversampling ∆Σ ADC and integrating ADC 

are the best candidates for system-on-a-chip (SoC) sensor ADC applications. These two 

types of converters are then compared in both the frequency and time domain (which is 

equivalent to a comparison of Nyquist sampling ADCs and ∆Σ oversampling ADCs). It is 

shown that under most circumstances the ∆Σ oversampling ADCs provide a sensitivity 

advantage of more than 20 dB and do so with much less complex front-end hardware.   

This chapter begins with a description of a bio-optoelectronic sensor system 

application (BOSS) and from this we derive general sensor SoC ADC requirements 

(sections 1.1 and 1.2). An argument that a few ADC designs are more appropriate than 

others for sensor system ADCs designs is given in section 1.3. The fact that many 

textbooks present useful and detailed design and analysis tools for a few selected SoC 

ADCs, but fail to provide a comprehensive comparison between the two important 

classes of ADCs considered here, Nyquist ADCs and ∆Σ ADCs, is stated in section 1.4. 

Also several published ADC comparison studies are summarized in the same section.  
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1.1 Bio-Optoelectronic Sensor System 

The bio-optoelectronic sensor system (BOSS) is a multi-investigator project that 

provided the motivation for this study. The BOSS implements an array of real-time SoC 

sensors, which detect chemical and biological agents in various forms [1]. The basic 

system concept is shown in Figure 1. A product prototype of this system has been 

fabricated by other researchers by assembling interferometric waveguides and other 

commercial components, such as diode lasers, a photo diode detector array, and an 

external signal processing system. The entire prototype package has size of 2.5 by 3.0 by 

6.5 inches. The system can detect chemicals such as benzene, chloroform, methylene 

chloride, toluene, etc. Also it can detect bio-molecules such as IgG/anti-IgG and 

salmonella. The sensitivity of the system is demonstrated to be up to 10 parts-per-billion 

(ppb), dependent on the target agents [2-6]. 
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Figure 1: Bio-optoelectronic sensor system block diagram 

 

The goal of the BOSS project is to integrate all optical and electrical components 

on a stand-alone silicon complementary metal-oxide-semiconductor (Si-CMOS) chip, 

which produces an output equivalent to the prototype. This thesis concentrates on the 

design of the mixed-signal read-out component, or analog-to-digital conversion 

architecture of the BOSS SoC. 

 

1.2 ADC Requirements 

In this section we will show that for sensor system-on-a-chip applications, small, 

reliable, low-power, and sensitive ADCs are required. The requirements on the size of the 
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system are strict since the integration of optical components takes a large chip area. Also 

it is undesirable to have the uneven geometry of the Si-CMOS circuitry beneath the 

optical systems. Though there are several cases of successful implementation of optical 

components over a Si-CMOS IC [7], the optical components in the BOSS sensor are 

interferometric waveguides, which are very sensitive to fluctuations in the refraction 

index of material around the waveguide and the smoothness of the waveguide surface. 

The integration sites for waveguide, interferometer, and laser will occupy the principal 

area of the chip, as will be seen later in the integrated prototype in Chapter 4. The ADC 

and the post-signal processing system area will be limited to a small portion of the chip 

due to these optical component restrictions and the available low-cost chip sizes provided 

by the MOSIS service [8]. Also, the ADC should be located as near as possible to the 

sensing components such as photo detectors to avoid signal degradation. 

In using the results of the analysis in Chapter 2 it can be shown that in sensor 

system-on-a-chip applications, where there is considerable background digital noise or 

environmental noise, directly connected oversampling ADCs have a distinct advantage 

over Nyquist rate ADCs that integrate the input signal between samples. This is a new 

result, as previously (particularly in imaging applications) it has been believed by many 

that integration of signal between samples (for example, on a CCD) was the lowest noise 

approach. 

The specific numbers from the analysis are quite dramatic on this point.  To 

obtain these numbers, two input signal types were considered, first a band-limited but 

spectrally white input was considered, and then the same input but with first order band-
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pass filtered inputs above the Nyquist rate added. The first input type is not very severe, 

mimicking typical complex real world inputs, the second input type is much more severe, 

in that the unwanted signals above the Nyquist rate will cause aliasing problems in many 

converter types; however, in system-on-a-chip applications, it is quite likely that large 

signals due to the digital processing, power supply, or other signal processing circuitry on 

the system will appear on the input. This model also represents the case where there is 

uncertainty regarding the spectral content of the input, which often occurs in the real 

world when systems operate autonomously in uncertain environments. In this case the 

choice of converter conversion rate (the Nyquist rate) could be made too low, leaving 

some signal power above the Nyquist rate. 

In all of the simulations in Chapter 2, a background circuit noise level was chosen 

so that the in-band noise of a single stage was 16-bits (98.1 dB) below the signal power.  

This is actually more noise than we have measured in our CMOS chips described in 

Chapter 4, and provides a measure of the effectiveness of each design considered, in that 

the closer the designs signal to noise is to 98.1 dB, the better the design is performing. 

Table 1 presents the results, with the details being presented in Chapter 2. For the 

less severe band-limited case, the oversampled converter provides a 20 dB advantage 

over the integrating Nyquist converter (approximately 3-bits more resolution) due 

entirely to out-of-band circuit noise, which is integrated by the Nyquest converter and 

removed by the oversampling converter.  However, in the case of the more severe input 

with unwanted pink signal spectrum above the Nyquist rate (the system-on-a-chip type 
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input), the oversampling converter has an 87.7 dB (more than 14-bits) advantage, due to 

the severe aliasing that occurs in the Nyquist rate converter. 

 

Table 1: Comparison of the SNR of integrating Nyquist sampling and oversampling 
front-end models 

Front-end model 

 

Input signal model 

Nyquist 
sampling Oversampling Oversampling 

advantage 

Input signal is white up to 
Nyquist 73.5 dB 93.5 dB 20.0 dB 

Input signal is white up to 
Nyquist and first-order cutoff 

(pink) above Nyquist 
6.5 dB 94.2 dB 87.7 dB 

 

The overall conclusion of this work is that for the class of applications we are 

considering, directly connected oversampling converters are very advantageous. However, 

oversampled converters must operate directly connected to the input during the entire 

sensing time, to be able to measure the out-of-band signals so they can be filtered out. 

Thus, if many sensors are used and sensitivity is the primary concern, parallel 

oversampled converters are required to ensure the longest possible sensor connection 

time to minimize the in-band noise. If a single oversampled converter were used, then for 

a given sensor output rate the converter would only connect to a given sensor for a small 

portion of the overall sensor sample time. This would raise the Nyquist rate of the 
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converter and increase the amount of out-of-band noise sampled by the number of 

sensors used. For example, if there are 1000 parallel sensors used to make a measurement, 

then using a single oversampled converter to make a measurement will produce 1000 

times more noise than using 1000 parallel oversampled converters, because each sensor 

will be sampled 1000 times slower in the parallel case. With integrating converters, it is 

also routine to perform at least the integration in parallel (e.g., CCD imagers). Thus, it 

will be assumed that for the class of applications to be considered here, only parallel 

oversampling converters make sense. This may not be true for applications where 

sensitivity is not an issue. 

This places a very severe size constraint on the digitizing portion of the 

oversampled converters. Fortunately, there are very compact first-order oversampling 

digitizers that use ∆Σ encoding to shape quantization noise and thus achieve high 

numbers of bits of resolution with essentially a one-bit architecture. These first-order ∆Σ 

converters and the very similar single-slope Nyquist ADCs will be chosen eventually as 

the primary converters to be compared in section 1.3. However, in the later parts of this 

section, we will consider many other types of converters and show that they are not 

appropriate for a sensor of the same class as the BOSS sensor. 

The sensitivity of the BOSS sensors is dominated by the resolution of ADC and a 

minimum of 12-bits resolution has been found to be necessary to get a meaningful output 

when the sensor is implemented from discrete components [9, 10]. It is probable that 

compromises in integrating the sensor will raise the sensitivity requirement even higher 
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to 14-bits or more, so we will assume the BOSS sensor class requires very sensitive 

converters. 

The speed of the integrated circuit is not an overriding issue with this application 

since the reaction of chemical and biological agents occurs slowly compared to available 

low-cost CMOS signal processing speeds. This slow conversion speed also means that 

we assume that considerable off-chip digital signal processing is quite feasible on the 

digital chip output. We expect this would be performed just prior to when the sensor data 

is used in an application. The lower-bound of the sampling rate is in the order of 0.1-1 Hz 

[3, 4]. 

 

1.3 ADC Family Selection for Sensor SoC Application 

The BOSS sensor can now be categorized as one of a class of ADC applications 

that restrict the digitizer size and require high sensitivity, but do not focus on output data 

rate or power consumption issues. These attributes, small size of digitizer and high 

sensitivity at the expense of higher output data rates and higher power, will restrict the 

ADC families we need to investigate to find the best converter designs. We will consider 

flash, algorithmic, slope-integrating, and ∆Σ ADCs in this comparison. 

Flash type ADCs consist of a very large bank of thermometer coded comparators 

and a decoder [11-17]. Most flash ADCs concentrate on high-speed conversion, 

sacrificing power consumption, sensitivity, and circuit area for speed [18, 19]. High 
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sensitivity flash type converters are rare, and the available resolution is below 10-bits 

[20]. They provide very fast, simple, and straightforward operation, but they are not 

suitable for BOSS type sensor SoC integration since they take up too much circuit area. 

Algorithmic ADCs refer to a class of ADCs that perform a binary search to find 

the conversion result [11-17]. There are many variations on this architecture utilizing 

pipelined stages of differing resolution; however, most algorithmic ADCs have 12-bits or 

lower resolution, which make them unattractive for sensor applications. In addition the 

circuit size becomes large when passive components and the number of pipelined stages 

are optimized for high sensitivity (see Table 9 in Appendix A). Thus, although some very 

small algorithmic converters have been built, their accuracy is poor, making this family 

unsuitable for BOSS-style sensor SoC applications. 

Single-slope serial, dual-slope serial, and ∆Σ ADCs are all capable of very 

compact digitizers that achieve high resolutions [11-17]. Usually the first two schemes 

are implemented as Nyquist sampling converters, while the ∆Σ converters use 

oversampling since ∆Σ noise shaping provides dramatic enhancement of accuracy when 

combined with oversampling (1-bit ∆Σ sampling can achieve 18 – 24 bits of accuracy 

with oversampling [21]). Another major difference is that ∆Σ converters require a digital 

decoder or filter to retrieve the measured digital result, whereas slope-integrating 

converters produce a final digital result with minimal digital signal processing. For the 

BOSS type of application where data rate off chip is not considered an issue and 

abundant digital signal processing is assumed to be available off chip, it is not possible to 

discriminate between these two ADC families on the basis of the external digital 
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processing required. Thus we are forced to compare these two fundamentally different 

ADC technologies to determine which can achieve the best sensitivity.  

General descriptions and applications of single-slope ADCs, dual-slope ADCs, 

and iterative ADCs are presented in Appendix A. Appendix B provides discussions on 

∆Σ oversampling ADCs as encoders and decoders. 

 

1.4 SoC ADC Comparison Studies 

Many specialized technical areas, such as signal processing, communication, 

control, information theory, radio frequency circuit design, analog circuit design, digital 

circuit design, and VLSI system design, are involved in ∆Σ modulator design and 

analysis. This means that the study of the converter itself requires a wide range of skills. 

As a result, ∆Σ converters have not been fully understood in many aspects, even though 

there are numerous successful industrial and academic implementations. New 

architectures, variations, and implementations are reported frequently in the literature. 

The concept of the ∆Σ modulator first appeared as a patent in 1960, filed by 

Cutler in 1954 [22]. Although the concept was attractive, it was not practical for many 

years until high performance digital signal processing hardware technology for decoder 

design became possible with the development of fine-line VLSI Si-CMOS processes in 

the 1980s. In the interim, decoder-centered ADCs that do not need complex decoding 

hardware became popular choices for ADC implementations. Today oversampling noise 
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shaping ADCs are widely used for slower speed applications such as audio, and high-

speed ADC designs employ Nyquist rate decoder-centered schemes. 

There are many publications in books and journals dealing with ∆Σ ADCs. Table 

2 shows recent books on data converter design and analysis.  
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Table 2: Recent books contain data converter topics 

Ref. Title Author Year

[15] CMOS Integrated Analog-to-Digital and Digital-to-Analog 
Converters 

Plassche 2003

[11] CMOS Analog Circuit Design Allen 2002

[13] CMOS Mixed-Signal Circuit Design Baker 2002

[23] Mixed-Signal Systems Handkiewicz 2002

[16] An Introduction to Mixed-Signal IC Test and Measurement Burns 2001

[24] Design of Analog CMOS Integrated Circuits Razavi 2001

[25] CMOS Data Converters for Communications Gustavsson 2000

[12] CMOS Circuit Design, Layout, and Simulation Baker 1998

[17] Analog Integrated Circuit Design Johns 1997

[26] Delta-Sigma Data Converters Norsworthy 1997

[27] Principles of Data Conversion System Design Razavi 1995

[28] Sigma Delta Modulators Hein 1993

[29] Oversampling Delta-Sigma Data Converters Candy 1992

[14] High-Speed Analog-to-Digital Conversion Demler 1991

[30] Analog MOS Integrated Circuits for Signal Processing Gregorian 1986
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While ∆Σ modulators can be considered as an extension of classic converters 

functionally [11-17], they are regarded as a totally different system when a detailed 

nonlinear analysis is required [26, 28, 29]. The design of ∆Σ ADCs is mostly conducted 

using a linear approximation in the frequency domain. The converter architecture yields 

to linear methods when the quantizer in the loop is assumed to approximate to a white 

noise source [11-17, 23-25, 27, 30]. This approximation is adequate, provided that the 

effective resolution of the converter is high and the input is random. This linearization 

approach enables complex higher-order design of ∆Σ ADCs; however, it does not match 

experiments and measurements in several aspects as discussed in Appendix B.  

With the linearized quantization noise model, the main advantage of ∆Σ 

oversampling ADCs over Nyquist ADCs is a simplified analog front-end. Linear ∆Σ 

analysis articles and books listed in Table 2 do not provide a complete analysis of the 

effects of analog front-ends. A quantitative analysis on how much the oversampling ADC 

analog front-end is better or worse than Nyquist ADC is necessary for converter choice 

and design, particularly in the BOSS-like system-on-a-chip sensor case, where the small 

size of the converter is an issue. Despite its wide use, linear ∆Σ ADC analysis tends to 

compute worst-case ∆Σ ADC performance, and it is shown that full nonlinear modeling is 

essential for a fair comparison. 

To understand both desirable and undesirable nonlinear phenomena in ∆Σ ADCs, 

a nonlinear modeling technique is essential [26, 28, 29]. With nonlinear models, known 
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initial states of a ∆Σ ADC and a deterministic signal input are necessary to obtain an 

accurate analysis. General analysis tools for unknown internal states and unknown input 

signals are still being developed [28, 31]. Those techniques involve complex linear 

algebra, projection, and state-space modeling as discussed in Appendix B. However, it 

has been shown that better ADC performance can be obtained for a given ∆Σ ADC 

design by adopting nonlinear modeling of ∆Σ for decoder design [32]. In general 

optimum solutions to ∆Σ oversampled ADC decoder design have yet to be found. Most 

of the nonlinear algorithms currently proposed are limited to special cases, such as a 

specific noise shaping filter order and architecture. To date, the only general solutions are 

based on linear analysis. 

There are more than 2,000 ∆Σ modulator related articles currently in the published 

literature [33]. Most of the articles and texts concentrate on details of specific conversion 

schemes or describe ∆Σ ADCs with simple linear models. While it is well known that 

oversampling noise shaping ADCs have achieved better performance for certain 

applications than Nyquist ADCs, the reasons why are not well elucidated in any 

published articles or texts. Furthermore, ADC analysis and comparison for sensor SoC 

integration applications are not found in any references. There are some articles that 

discuss comparisons of Nyquist rate ADCs and ∆Σ ADCs, and Table 3 summarizes these 

articles. 
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Table 3: Articles on ∆Σ data converter comparison 

Ref. Title Auhtor Year

[34] Comparison between PWM and sigma-delta modulation in a 
power factor correction system 

Dallago 2002

[35] A sigma-delta modulator as an A/D converter Plassche 1978

[36] Comparison of vector sigma-delta modulation and space-
vector PWM 

Nieznanski 2000

 

In [34], the performance of sigma-delta modulator (Σ∆M) and pulse-width 

modulator (PWM) in single-phase AC / DC boost power factor correction (PFC) system 

is compared. Sigma-delta modulators have irregular switching frequency, and they can 

avoid concentration of emissions at discrete frequencies, which is a common problem in 

pulse-width modulation. Also sigma-delta modulators provide high noise rejection and 

high linearity between the modulation signal and duty cycle through internal integrator 

when compared to PWM schemes. With a measured line current spectrum, a sigma-delta 

modulator provided much less distortion than a pulse-width modulator. Also sigma-delta 

modulator showed lower conducted emission at the average switching frequency than 

pulse-width modulation. Only the encoder or modulator part of the sigma-delta 

modulation is considered in the study. 
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A first-order ∆Σ ADC is demonstrated in [35]. It uses bipolar technology for the 

analog circuits and MOS technology for the digital circuits. Bipolar technology was used 

for the sigma-delta modulator, since the technology has advantages for input and 

reference source circuits over MOS technology. The design includes an auto-zero circuit, 

voltage-to-current converter, multi-input data acquisition system, and digital-to-analog 

converter. The measured resolution is more than 16-bits with 1.8 × 2.9 mm2 and 2 × 3.2 

mm2 chip and 27 mW power consumption. This paper shows that low-speed but high-

accuracy ADCs can be implemented with sigma-delta modulator that outperforms 

integrating ADCs such as the dual-slope ADCs. 

The third article in Table 3 shows that a modified vector sigma-delta modulator 

(VΣ∆M) can replace a space-vector pulse-width modulation in the inverter control 

applications. Vector sigma-delta modulators are regarded as a variation of pulse-density 

modulation (PDM), and the original idea is modified to fit within power electronics 

applications by eliminating direct polarity reversal and by reducing inverter switch loss. 

Vector sigma-delta modulator performance is comparable or better than space-vector 

pulse-width modulation in aggregate quality, total harmonic distortion, switching loss 

factor, and switching frequency characteristics. Vector sigma-delta modulators are shown 

to provide smooth fine-tuning by parameter adjustment, freedom from minimum pulse-

width problems, and relaxed hardware requirements since a timer is not required. The 

article concentrates on the vector ∆Σ encoder since decoding is not required with inverter 

applications [36]. 
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These studies present specific design comparisons for particular (and different) 

applications rather than a general comparison.
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Chapter 2   

ARCHITECTURAL COMPARISON OF SYSTEM-

ON-A-CHIP ADC WITH STATISTICALLY DEFINED 

INPUT 

 

This chapter provides an architectural performance comparison between Nyquist 

rate sampling ADCs and oversampling ADCs. The comparison is performed by making a 

linear approximation to the quantization stage of the converters and then using the 

frequency domain analysis to compute the average statistical performance of the ADCs to 

band-limited random inputs and additive broadband noise. 

All the function blocks that the input signal goes through until it gets to the actual 

data converter are defined as the analog front-end of ADC system, as shown in Figure 2. 

Many ADC system implementations only include the ADC itself, ignoring auxiliary but 

critical front-end functional blocks [37-45]. The analog front-end plays an important role 

in conditioning the input signal and transferring it to an ADC. It can be a limiting factor 

for ADC noise and bandwidth performance. Models and analysis for analog front-ends 

are discussed in Appendix C. 
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Figure 2: Definition of front-end and ADC in ADC system 

 

We are assuming a relatively wide-band input signal that is typically more severe 

than most real-world signals.  This is because real-world signals tend to only have signal 

content well below the Nyquist rate. However, in the system-on-a-chip application we are 

considering, input frequency content at or above the Nyquist rate is very likely due to 

interference from the integrated digital and other components on the system. Thus 

although stand-alone converters might perform better than the predicted signal-to-noise 

ratio (SNR) in this analysis, system-on-a-chip converters will probably perform quite 

close to the simulated results, and would not be adequately modeled with only low-

frequency inputs. 
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Another issue with frequency domain analysis is that the ∆Σ ADC has nonlinear 

internal states. However, the nonlinearity of the ∆Σ ADC produces effects mainly in the 

quantization noise band that are filtered out, rather than in the low-frequency signal band. 

Thus the effect of neglecting nonlinearity in this analysis is small. 

 

2.1 Architectural Comparison  

In the following subsections, an architectural comparison of ADCs will be 

presented by utilizing the analog front-end models and input signal models provided in 

Appendix C. All the analog front-end components are modeled in frequency domain and 

cascaded according to the front-end models shown in Figure 93 and Figure 94 in 

Appendix C. There are four possible front-end configurations to be compared as 

summarized in Table 4. Most of these set-ups are applied to both Nyquist sampling and 

oversampling ADCs. 
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Table 4: Analog front-end configurations; o = use this element × = not use the 
element 

Configuration Buffer LPF SH ADC 

Traditional ADC o o o o 

Direct sample-and-hold ADC o × o o 

Direct ADC o × × o 

Converter constraint ADC × × × o 

 

The input signal power P0 is normalized to 1 and a flat spectrum noise power N0 

of 1×10-10 per front-end stage is chosen. The noise power is selected to produce 16-bits 

equivalent output when only one input stage is used and nothing else affects the SNR. 

Also the selected noise power turns out to be a good estimation of a real circuits’ input 

noise, as demonstrated in Chapter 4. Each stage in the converter is assumed to add the 

same amount of noise power Nt = N0 to the signal. This is analogous to each component 

using similar circuits in the signal path, each with similarly-sized transistors having 

similar current flow. The underlying assumption here is that ADC architectural 

differences will not allow a significant difference in the amount of noise reduction 

achieved through design optimization. The sample-and-hold capacitor is assumed to be C 

= 0.1 nF, which will generate kT/C noise equal to about a half of Nt at T  = 300 K. 
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The output signal and noise spectrum are obtained with numerical analysis to 

produce SNR for each configuration. The SNR is obtained as a ratio of the signal power 

in the desired band to all the noise power in dB. For oversampling, it is assumed that a 

first-order anti-alias LPF provides enough attenuation to avoid signal aliasing when the 

OSR is high enough (usually the OSR = 256 - 1024), and that a post digital signal 

processing algorithm removes all remaining out-of-band noise through multirate signal 

processing. The simulations are performed in frequency domain with frequency step 

2×10-3 and frequency range [0, 2×102]. The signal and noise powers are obtained through 

the extended and closed trapezoidal rule integration [46]. 

 

2.2 Analytic Comparison for Traditional Front-end  

2.2.1 Band-limited Input Signal Model A 

Using the strictly band-limited signal model A (Xin,A(f) given in the equation (34) 

in Appendix C), the relationship of signal bandwidth to SNR can be explored for the 

traditional ADC with buffer, anti-aliasing low-pass filter, and sample-and-hold, as 

modeled in Figure 93 (Appendix C). A desired input signal bandwidth fM is normalized 1 

for all the following simulations. All filter cut-off frequencies are set to the normalized 

frequency 1. The resulting SNR is plotted in Figure 3. As long as the input signal is band-

limited to the designed signal band fM = 1, the order of the filter does not have much 

effect on the signal-to-noise ratio. Slight differences with different filter order come from 
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the different attenuation of input signal power. The picked filter cut-off frequency 1 

provides the almost optimal signal-to-noise ratio with the band-limited input, whose 

bandwidth is less than 1. When the input signal bandwidth is larger than the designed 

signal band fM, the filter order can make significant improvement in signal-to-noise ratio 

by changing filter cut-off frequency. A three-dimensional plot of SNR as a function of 

input signal bandwidth and filter cut-off frequency for sixth-order anti-alias LPF, shown 

in Figure 4, demonstrates that less change in SNR occurs as signal bandwidth changes 

when an optimal cut-off frequency is used rather than the normalized frequency 1. 

 

 

Figure 3: Traditional ADC front-end SNR performance with input signal model A 
versus input signal bandwidth 

 



 

28 

 

Figure 4: SNR plot as a function of signal bandwidth and filter cut-off frequency for 
the 6th order LPF case (Notice that the SNR is essentially unchanged with signal 

bandwidth if the optimal filter cutoff for wide-band input is used.) 

 

The results in Figure 3 show that although band-limiting the input improves the 

SNR of the Nyquist converters, the improvement is insufficient to overcome the 

performance advantage of the oversampling converters (which also improve with signal 

band limiting).  

 

2.2.2 Flat Input Signal Model B  

With the flat spectrum input signal model B (Xin,B(f) given in the equation (35) in 

Appendix C), the traditional analog front-end given in Figure 93 in Appendix C produces 
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the SNR shown in Figure 5. The Nyquist sampling case shows that the presence of a first-

order buffer only increases the SNR slightly. An optimal cut-off frequency that gives the 

maximum SNR for each LPF can be obtained from the figure. This optimum frequency is 

quite low compared to the sampling rate. There is an apparent reduction in the 

improvement of SNR with increased order of LPF, so that filter orders greater than 

second-order add little to the converters’ performance. 

 

 

Figure 5: Traditional ADC front-end SNR performance with input signal model B  

 

The oversampling case shows that the order of the LPF does not affect the 

performance; this suggests that no filter is needed with an oversampling converter. In fact 

if a filter is used with an oversampling converter, then the cut-off frequency of the LPF 
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should be outside of the signal band to maximize the SNR. Therefore, a buffer as a low-

order LPF will be enough for oversampling to avoid additional noise that might come 

from high-order filters. 

It is clear from Figure 5 that the oversampling converter outperforms the best 

Nyquist converter by approximately 20 dB, and outperforms the Nyquist converter with 

second-order filter by 30 dB. Coupled with the elimination of the need for an anti-

aliasing filter, this performance advantage makes the oversampling converter a clear 

favorite for applications where sensitivity is a priority. 

In summary the oversampling converters maintain their 20 dB advantage over 

Nyquist converters for most signal bandwidths, and actually achieve nearly 40 dB 

improvement over the second order LPF Nyquist case when wide-band input signals are 

applied. 

 

2.3 Analytic Comparison for Analog Front-end with Direct 

Sample-and-Hold  

The analog front-end configuration with direct sample-and-hold consists of a 

buffer, sample-and-hold, and ADC only, as shown in Figure 94 (Appendix C). As 

discussed in the classic configuration case in the previous section, Nyquist sampling with 

a higher-order anti-alias LPF cannot achieve anywhere near the performance of the 

oversampling case. In the direct sample-and-hold front-end, the absence of an anti-alias 
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LPF causes more signal aliasing, so Nyquist converters suffer even more. One solution to 

this is a cascade of similar buffer stages with cut-off frequency around fM. 

 

2.3.1 Band-limited Input Signal Model A  

The band-limited input signal Xin,A(f) is applied to the configuration and the 

output SNR is plotted in Figure 6. Since the buffer is not designed for the rejection of 

out-of-band signal, SNR degrades quickly as the input signal bandwidth goes beyond 1. 

In summary, the band-limited input helps the Nyquist converters considerably when 

signal content above fM is eliminated; however, the Nyquist converters still under 

perform the oversampled converters by 20 dB even when the signal is band limited. 
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Figure 6: Direct sample-and-hold ADC front-end SNR performance with input 
signal model A versus input signal bandwidth 

 

2.3.2 Flat Input Signal Model B 

Figure 7 shows the resulting SNR with the wideband input signal model B, using 

a buffer cut-off frequency fixed at 0.7fM. Clearly a higher-order buffer can simulate the 

effect of anti-alias LPF when it is designed as a filter with low cut-off frequency. Usually 

a buffer is designed to provide a gain-bandwidth around 0.6fM - fM to ensure high-speed 

operation [47]. In the oversampling case, the order of buffer does not contribute much to 

the performance, and the buffer itself is not necessary since sample-and-hold works as a 

LPF with a proper capacitance value. In summary, the oversampled converter 

outperforms the Nyquist converters by around 30 dB, even with the buffer-based filters. 
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Figure 7: Direct sample-and-hold ADC front-end SNR performance with input 
signal model B versus buffer cut-off frequency 

 

2.3.3 Analog Front-end with Direct Conversion 

Many contemporary ADCs do not have explicit anti-alias LPF and sample-and-

hold. This direct conversion configuration consists of a buffer and an ADC as shown in 

Figure 94 in Appendix C.  

The band-limited signal model A, Xin,A(f) is applied to input with a fixed buffer 

cut-off frequency 0.7fM and the output SNR is given in Figure 8. The figure argues that 

there is no need for any FE function block to get the maximum available SNR as long as 

the input signal is strictly band-limited to fM. The strict band-limitedness assumption on 

input signal is rather naive, and a filtering function is unavoidable in practice. Any non-
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ideal filter attenuates some portion of in-band signal power and adds noise to the signal. 

The available SNR performance of Nyquist sampling is better with direct conversion than 

with direct sample-and-hold conversion for the input signal band less than fM, and it is 

worse for the signal band greater than fM. As a matter of fact, the absence of sample-and-

hold would cause the Nyquist ADC output to become unreliable since a varying signal 

applied directly to an ADC causes the conversion algorithm to fail in most cases (see 

Appendix C.6 for an example). The actual ADC output error without a sample-and-hold 

depends on the conversion algorithm. The oversampling performance is better than in the 

direct sample-and-hold case since there are fewer blocks that add noise than direct 

sample-and-hold. 

 

 

Figure 8: Direct sample-and-hold ADC front-end SNR performance with input 
signal model A versus input signal bandwidth 



 

35 

 

When the input signal model is Xin,B(f), the buffer is essential since there is no 

way to attenuate out-of-band signal power. Without a filter function block to attenuate 

out-of-band signal, there is a total signal aliasing, and the output SNR will be -∞. The 

output SNR is given in Figure 9. Nyquist sampling performance is worse than the direct 

sample-and-hold case due to the absence of sample-and-hold as a low-pass filter. 

Oversampling configuration performance is better since less noise power is added in the 

analog front-end. 

 

 

Figure 9: Direct sample-and-hold ADC front-end SNR performance with input 
signal model B versus buffer cut-off frequency 
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2.3.4 Summary 

Of all the architectures explored so far, the oversampling converter with direct 

connection to the signal is by far the best alternative for high sensitivity applications. 

When the input can be assumed band-limited, Nyquist converters with just a sample-and-

hold input will perform to within 20 dB of the oversampling converter and, as such, 

might be desirable if there are not the resources necessary for the digital signal processing 

necessary for operation of the oversampling converters. 

 

2.4 Converter-constrained ∆Σ  Conversion 

It is discussed in Appendix C that a first-order ∆Σ ADC has an extended filter 

transfer characteristic which is similar to a LPF (shown in Figure 103 in Appendix C). A 

second-order ∆Σ can be proven to have the same characteristics, except that the 

asymptotic filter order is second order through the same analysis. The cut-off frequency 

of the asymptotic ∆Σ LPF is fs,os/2π and the attenuation at fs,os is about -10 dB. Thus when 

the oversampling ratio is high enough, the signal power that folds back, due to aliasing, 

into [-fM, fM] will be 6 dB more attenuated by this filter. In this case, the oversampling 

assumption does not hold since the interested frequency range is the sampling frequency, 

not the signal bandwidth. The higher the order of ∆Σ ADC, the more attenuation is 

available for the in-band and folded-back signal power. This means that ∆Σ ADCs can 

provide a better SNR performance of the "no buffer" case in Figure 8 even when the 
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input is not band-limited and the buffer is not present. A simulation shows that fourth-

order noise shaping ∆Σ ADC can have 64 dB SNR without a buffer, taking advantage of 

the inherent filtering characteristics. 

 

2.5 Summary of Analog Front-end Performance Comparison 

This section provides a summary of available SNR with various analog front-end 

configurations. We will assume that the filter order of the traditional ADCs is always 

fourth order and that the buffer for direct sample-and-hold and direct ADC cases is also 

fourth order. 

When the band-limited input signal model A, Xin,A(f) is applied, the output SNR 

plot is given in Figure 10. We see that the band-limited signal boosts the SNR of the 

traditional ADCs without LPFs by around 1 – 3 dB; however, they are still 20 – 30 dB 

worse than any oversampling converter. We also see that the oversampling ∆Σ ADC is 

still the best performer by slightly less than 30 dB. 
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Figure 10: All ADC analog front-end SNR performance with input signal model A 
versus input signal bandwidth 

 

With the wide-band input signal model B, Xin,B(f), the SNR plot of every 

configuration is shown in Figure 11. Clearly any oversampled converter with a wide-

band input stage provides almost the same performance. It is also clear that even a well-

designed Nyquist converter will suffer approximately 30 dB sensitivity penalties. 

Furthermore, the filters and buffers will need to have bandwidths of 1/10th of the 

sampling frequency. 
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Figure 11: All ADC analog front-end SNR performance with input signal model B 
versus filter or buffer cut-off frequency 

 

According to the simulations, though oversampling ADCs need minimal signal 

conditioning, the minimum first-order filtering is enough and more filtering actually 

degrades signal quality. Much more rigorous filtering is necessary for Nyquist sampling, 

and there is a trade-off between the filter noise and filter specification. Consequently, 

oversampling ADCs with the simplest front-ends can have better signal-to-noise ratio 

than Nyquist sampling ADCs with necessary analog front-ends in the perspective of a 

statistically-defined input signal in frequency domain. 

The relative SNR performances compared with the maximum available 

performance of all cases when input signal model B with bandwidth fM is applied are 

summarized in the Table 5. 
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Table 5: Relative SNR comparison of all cases with input signal model A, signal 
bandwidth fM 

Configuration SNR (dB) 

Buffer, 4th-order LPF, sample-and-hold Nyquist sampling -26.7 

Buffer, direct sample-and-hold Nyquist sampling -29.5 

Buffer, direct converter Nyquist sampling -27.7 

4th-order LPF, sample-and-hold oversampling -6.6 

direct sample-and-hold oversampling -4.5 

direct oversampling 0.00 
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Chapter 3   

CODEC MODELING OF ADC AND DECODING 

PERFORMANCE ANALYSIS 

 

This chapter takes a time-domain analysis approach to model an ADC as an 

encoder and decoder, or as a CODEC. While the discussion provided in the previous 

chapter puts emphasis on the available performance of ADC by characterizing the analog 

front-end, there is a limitation in the modeling of ∆Σ modulators as linear since they are 

actually nonlinear. Though the linear approximation is good enough for general-purpose 

analysis and tends to give a lower-bound pessimistic performance, the linearization of 

quantization error forces ∆Σ modulators to be underestimated in their performance.  

A perspective that an ADC can be modeled as a communications channel and 

CODEC is presented in sections 3.1 and 3.2. A new proposed ∆Σ decoding scheme is 

presented in section 3.2. To explore the maximum available performance of ∆Σ CODEC, 

several decoding schemes, including the suggested algorithm, are compared in sections 

3.3 - 3.5. 
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3.1 ADC Modeling as a Communication Channel 

An ADC can be modeled as a general communication channel, and the channel 

capacity C of it can be derived using information theory as discussed in Appendix D. For 

an ADC input signal X⊂[0, 1] with mean µX=1/2 and variance σX
2, the output of ADC Yk 

is given as (1). The quantization noise N is assumed to be Gaussian noise with a small 

enough quantization step ∆, whose mean is N = 0 and variance is σN
2=∆2/12. Though Yk 

and Nk take discrete values, let us ignore it for the time being. The input Xk takes an 

analog value. Let us assume an ideal anti-alias LPF and sample-and-hold for ADCs. The 

information capacity of a channel is given in (2), as discussed in the Appendix D. The 

quantization step size ∆ and the number of quantization steps S∆ are in inverse relation. 

 

(1):  Yk = Xk + Nk,k =1,2,L,K  

(2): C =
1

2
log2 1+

P

∆2 /12

 
 
 

 
 
  

 

It is notable that the information capacity of a channel is a function of signal 

power and noise variance, which is equivalent to noise power. For both a flash type ADC 

and a ∆Σ ADC, maximum signal power P is given as (3). With flash ADC, quantization 

noise power σN
2=∆2/12 will be distributed over sampled spectrum as a white noise, and 

the capacity of the channel will be given as (4). 
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With first-order ∆Σ ADC, the noise power can be obtained, as shown in (5), for a 

large oversampling ratio M, through an approximation of a sinusoidal frequency 

spectrum of the noise-shaping filter [11]. An ideal brick wall LPF is assumed for the 

downsampling filter. The channel capacity of ∆Σ ADC then is given in (6). The channel 

capacity is directly related to the number of bits available in the ADC as a 

communication channel. The results are compatible with linear analysis of ∆Σ analysis, 

as shown in Figure 12, where 9 dB per twice oversampling is available for the first-order 

filter (see Figure 83 in Appendix B). 
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Figure 12: ∆Σ channel capacity as a function of oversampling ratio 

 

3.2 ADC Encoding and Decoding 

In most cases, an ADC input is an amplitude-modulated signal with a carrier. The 

carrier can be just a DC level or a sinusoid with a carrier frequency for a lock-in mode 

operation. Only DC amplitude input signal is treated in this research for simplicity. By 

the nature of analog-to-digital conversion, this analog input is turned into a digital 

representation, such as thermometer code, gray code, circular code, signed magnitude 

code, one's complement code, two's complement code, offset binary code, etc. [15]. One 

interesting thing to mention is that there are ADC internal digital representations that are 

different from the final digital representation. The flash ADC internal representation is 

the thermometer code, while the single-slope ADC uses a time-domain thermometer code. 
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A flash ADC internal representation goes through a decoder to generate a binary code, 

which can be in any code representation, and a counter converts single-slope ADC 

internal representation to the desired representation. An iterative algorithmic ADC has 

rather a natural binary code oriented design since its internal and final representations are 

same [11-13, 15, 17]. Usually, the final desired output is natural binary code, while it will 

depend on the number system that the following digital signal process system has. The 

entire process of A/D conversion can be modeled as encoding and decoding as shown in 

Figure 13. If an ADC has an intermediate representation similar to the final output 

representation, it can be thought of as a decoder-centered or top-down approach design. 

 

 

Figure 13: Encoding and decoding of analog-to-digital conversion process 
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The first conversion from analog signal to internal digital representation is a lossy 

conversion since infinitely accurate information in analog signal, excluding noise, is lost 

and unrecoverable quantization error is introduced. In practice, there is a thermal noise 

floor as a lower bound of noise at room temperature, and a conversion would be 

effectively lossless if the quantization noise power added is less than the noise floor. The 

second conversion from internal digital representation to final digital representation is 

lossless with most Nyquist sampling ADCs, in the sense that the acquired information is 

not lost during conversion. In practice, many of the second conversion processes have 

error correction capacity to enhance conversion speed and linearity [11-13, 15]. 

A ∆Σ ADC has a digital stream output as an intermediate output format, which is 

usually a 1-bit stream, and there are various downsampling filters and decoding 

algorithms to convert the internal representation to the desired final format. Unlike 

Nyquist sampling ADCs, the second conversion process is not necessarily lossless, 

though the process occurs in the digital domain. Traditionally, downsampling filters have 

been used as a decoder, and several nonlinear decoding algorithms have been devised to 

attempt to find an optimal solution to the given ∆Σ output stream [31, 48-54]. 

Without noise in the input and noise added by the circuits, the output stream of a 

∆Σ encoder is deterministic for a given input. Though the analog input is a real number, it 

can be approximated and replaced with a rational number since digitization will discard 

unconverted information, resulting in an integer output. With L-bits output stream, there 

are 2L degree of freedom, or the number of code words, while only a portion of this 

freedom is taken advantage of by the ∆Σ encoder [29]. Let us assume that the input is 
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distributed over [0, 1] and a reference value for 1-bit analog-to-digital decision is 1/2. 

Using the nonlinear discrete ∆Σ system model discussed in Appendix B, the decoding 

problem for the first-order noise shaping encoder with constant input x and oversampling 

ratio L can be formulated as (7), where u is unknown internal state and y is observed 

digital output stream. At time n=k-1, input x can be estimated by adding up equations 

from n=0 to n=k-1 as given in (8). The bounds given in the equation are rather 

pessimistic since the internal state u is not known at all. Using all the bounds throughout 

the conversion period, a tighter bound for the estimated x can be obtained in (9). As a 

good guess, the middle point of the bound can be suggested as the solution to the problem 

as given in (10). 
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More rigorous bounds can be found by incorporating comparator output of each 

time step. When an output bit is high, the internal state is greater than the reference value; 

therefore, the lower bound estimation can be given as in (11). In the same way, an upper 

bound is found in (12) when the output bit is low. The estimation of input signal using 

both bounds is given in (13).  
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The decoding performance of the proposed algorithm will be compared in the 

following sections. The solution is similar to that of the ''zoomer'' algorithm, in the sense 

that it uses iterative bounds, but it does not assume any initial conditions on converter 

internal state during derivation [28, 49]. Also it uses two-way bounds rather than one-

way bounds to get tighter bounds. The actual performance of the proposed algorithm is 

dependent on the internal states. Figure 14 shows an example of the solution tracking 

behavior of the lower and upper bound in the proposed algorithm. The input value to ∆Σ 
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ADC is π/7≈0.4488 as a random number, and the absolute error of each bound and the 

final estimation from the input value are plotted. The operation of the nonlinear 

maximum and minimum functions can be seen in the long periods of constant error. 

During these periods, the bounds at individual iterations are worse than that for earlier 

iterations. 

 

 

Figure 14: The solution tracking behavior of the proposed algorithm 
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3.3 ∆Σ Nonlinear Decoding Algorithm Performance in Ideal 

Circuits 

A first-order ∆Σ modulator with non-ideality models shown in Figure 15 is used 

to evaluate the performance of various decoding algorithms. The input range of the ADC 

is [0, 1] and the ideal decision point for the 1-bit quantizer is 1/2 as defined in (14). All 

the non-ideal factors are turned off for ideal circuit decoding performance measurement. 

 

 

Figure 15: Error model of 1st-order 1-bit ∆Σ ADC 

 

(14): q(x) =
1 x > 0.5

0 x ≤ 0.5
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A sub-optimal filter [50] is selected to show the relative performance of linear 

filters. Three nonlinear decoding algorithms for DC level acquisition - zoomer algorithm 

[49], recursive [48], and the proposed scheme - are compared with assumptions that input 

signal is stationary and noiseless, and that circuit is also noiseless and perfect. There is an 

issue in zoomer algorithm that the unknown initial state degrades search results and 

makes it worse than the simplest linear filter. As long as it is a decoder, rather than a filter, 

it is possible to initialize internal state for every decoding. All nonlinear algorithms are 

given initial conditions for the best performances. Not only the signal-to-noise ratio 

(SNR) measurement, but also the decoding time could be of interest. Though the running 

time of each algorithm is highly dependent on the specific hardware realization, each 

decoding time is recorded and averaged for on-hand comparison [48, 49, 53, 54]. 

The zoomer, recursive, and proposed algorithm show better SNR than sub-

optimal linear filter by about 5.3 dB, 2.6 dB, and 10.2 dB, as shown in Figure 16. Every 

decoding scheme has more than 9 dB gain per twice OSR. Also the average decoding 

time of each algorithm is shown in Figure 17. 
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Figure 16: Signal-to-noise ratio performance of ideal ∆Σ decoding schemes 

 

Figure 17: Average decoding time of each decoding scheme 
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3.4 ∆Σ Nonlinear Decoding Performance with Nonidealities 

The ideal circuit is rather imaginary and provides no better than a mathematical 

verification. There are inevitable circuit imperfections and unexpected disturbances, as 

modeled in Figure 15. Stationary circuit imperfections, such as quantizer offset, leakage 

in integration, and feedback gain, are considered first. Noise in signal and integrator are 

equivalent in the first-order ∆Σ ADC. The comparator for a 1-bit ADC is prone to 

decision errors. These random influences are also considered. The oversampling ratio 

(OSR), the number of samples taken for filtering or decoding, is fixed to 256 for all of the 

following simulations. The definition of OSR in this context is different from that used in 

the signal processing. 

 

3.4.1 Stationary Circuit Nonlinearity 

The offset of quantizer can be modeled as (15), where coffset is the amount of 

offset in comparator. The leaky integration is described by a difference equation (16), 

where the degree of leakage is α. Also feedback error β caused by non-unity feedback 

gain is modeled in the same equation. 

 

(15): q(v) =
1 v > 0.5 + coffset

0 x ≤ 0.5 + coffset
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(16): v[n + 1] = (1−α)v[n] + x[n] − (1− β)y[n] 

 

Figure 18 is the simulation result of DC offset sweep of [-0.05, 0.05]. The 

performance of the zoomer and the proposed algorithms degrade noticeably as DC offset 

is increased while others remain same or fluctuate. As mentioned in [28, 49], DC offset in 

quantizer is equivalent to offset in initial condition for zoomer, and it cannot be 

compensated as long as the offset is not known. For the proposed algorithm, the obtained 

upper and lower bounds become inaccurate as the offset increases, which results in a 

rapid downturn of SNR. 

 

Figure 18: Signal-to-noise ratio with DC offset coffset in comparator 
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The integration leakage α is swept in range of [0, 2×10-3] and the resulting SNR is 

plotted in Figure 19. The performance degrades rapidly with all algorithms. It is 

interesting to see that the linear filter and nonlinear algorithms are following similar 

trajectories. Feedback error β causes almost the same effect on the decoding performance 

for the same sweep range. Figure 20 shows SNR of decoding algorithms with feedback 

error β sweep over [-1×10-3, 1×10-3]. 

 

 

Figure 19: Signal-to-noise ratio with integrator leakage α 
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Figure 20: Signal-to-noise ratio with feedback error β 

 

3.4.2 Performance with Noise Sources 

Two separate Gaussian random noise sequences were generated with standard 

deviation σn and σq, and added to the converter input and the quantizer input. Unequal 

weights that nonlinear algorithms put on the output streams of ∆Σ would make them 

vulnerable to burst noise. Also robustness against time-varying signal would be 

interesting to see if the algorithms are useful for the reconstruction of band-limited signal, 

though it is also ignored here to concentrate on the DC-level acquisition application, 

assuming that OSR is high enough and input is almost DC for sensor SoC application. 

All algorithms are less sensitive to quantizer noise than signal noise as shown in 

Figure 21 and Figure 22, which is natural since the ∆Σ decoder should have a low-pass 
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filtering characteristic, and quantization noise shaping reduces noise power in lower 

frequency band. Also nonlinear algorithms fail faster than linear filters with extreme 

noise in quantizer. The propose algorithm fails faster than other algorithms, and it is 

reasonable that the bounds are calculated based on the ideal and fixed quantizer decision 

point. 

 

 

Figure 21: Signal-to-noise ratio with input signal noise 
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Figure 22: Signal-to-noise ratio with quantizer noise 

 

3.5 Summary with Comprehensive Evaluation of ∆Σ Decoding 

Algorithms 

All non-ideal factors are taken into consideration to provide an estimate of real 

circuit performance. Let us assume α = 1.0×10-3, β = 1.0×10-3, coffset = 2.0×10-3, σn = 

5.0×10-6, and σq = 5.0×10-6. When OSR is 28 = 256, the estimated performance is 

summarized in dB in Table 6. The loss of the linear filter experience is smaller than that 

of nonlinear decoding schemes. Though the proposed algorithm suffers the worst loss of 

sensitivity, it still shows the best decoding performance, followed by zoomer algorithm.  
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Table 6: Decoding performance with all non-ideal effects 

Decoding algorithm Estimated SNR 

Optimal 68.32 

Zoomer 72.97 

Recursive 71.04 

Proposed 74.55 
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Chapter 4   

CASE STUDY ON SENSOR ADC READOUT 

SYSTEM 

 

This chapter provides a case study for robust and flexible ADC designs. The 

application is an integrated system-on-a-chip (SoC) sensor system with embedded photo 

detector array input. The simplified system diagram is given in Figure 23. 

 

Figure 23: Simplified sensor system diagram 
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Several considerations for integrated SoC sensor application are discussed in 

section 4.1. Performance requirements of analog front-end for photo detector input is 

analyzed in section 4.2. Two popular sensor readout ADCs with high sensitivity and 

compactness are designed for comparison in sections 4.3 and 4.4. Theoretical 

developments discussed in Chapter 2 and Chapter 3 are put to use for the comparison of 

designed ADCs in section 4.5. Implemented ∆Σ ADC circuit testing results with 

electrical, optical, and sensor system measurements will be given in sections 4.6 - 4.8.  

All the designs presented in the chapter are based on AMI Semiconductor 1.5 µm 

Si-CMOS process provided through MOSIS [8]. 

 

4.1 Embedded Photo Detector and Array 

There are many configurations available for photo detectors with standard Si-

CMOS process, including BJT and PiN type detectors as shown in Figure 24 and Figure 

25 [55]. 
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Figure 24: Embedded PiN photo detector 

 
Figure 25: Embedded BJT photo detector 

 

The size, spacing, and position of the photo detector should be optimized for the 

maximum sensitivity of embedded waveguide application. The sensitivity of a photo 

diode pixel is the function of detector size and noise. For waveguide input signal, one 

detector makes one pixel in an array, and an array of detectors makes a one-dimensional 

image scanner to perceive an optical pattern in the waveguide, assuming coupling of laser 
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into photo detectors. The detector size should be large enough to collect sufficient light 

compared with the dark noise of the detector and it should be small enough to generate 

meaningful pattern information in the waveguide. 

Figure 26 shows the photo and dark current measurement of embedded Si-CMOS 

detector with evanescent field coupling, where the measured responsivity is 0.12 A/W at 

632.8 nm [7]. “Rule of thumb” sensitivity available with the embedded detector is about 

100 dB, which is equivalent to about 16-bits resolution. 

 

 

Figure 26: Photo and dark current measurement with evanescent coupling to Si-
CMOS detector 
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The plots in Figure 27 and Figure 28 are time-domain responses of an embedded 

Si-CMOS detector with 85 Hz and 1 kHz chopped HeNe laser. The photo detector 

voltage biasing was 2.2 V, and the oscilloscope was terminated with 1 MΩ in the first 

plot and 50 Ω load in the second plot [7]. The bandwidth of the detector is above 1 kHz 

according to the plots. 

 

 

Figure 27: Time domain response to 85 Hz-chopped signal 
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Figure 28: Time domain response to 1 kHz-chopped signal 

 

With embedded optical waveguide and integrated Si-CMOS photo detector array, 

the coupling of laser into the detectors will be butt coupling or evanescent field coupling. 

Figure 29 and Figure 30 shows two side views of Si-CMOS circuits. Figure 29 has a 

common ground made of metal contacts to the substrate. Figure 30 has diffusion area 

used as an electrical common ground connection. The diffusion-based ground contact 

produced a very different geometry for the waveguide. The actual coupling mechanism 

will be highly dependent on the properties of integrated waveguide on the surface of the 

Si-CMOS circuit. Important factors are the thickness and termination of waveguide, the 

geometry of the Si-CMOS circuit itself, the uneven Si-CMOS chip surface, and the 

position of metal and contacts, which will cause scattering of the laser. 
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Figure 29: Side view of Si-CMOS circuit A 

 
Figure 30: Side view of Si-CMOS circuit B 

 

4.2 Analog Front-end 

The analog front-end designed for the embedded photo detector collects 

photocurrent as input with voltage biasing to photo detector. The output of the analog 
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front-end should be current to be compatible with a designed analog-to-digital converter, 

which will be discussed in the following sections.  

As a buffer, an analog front-end should provide a constant biasing independent of 

photo current input. A designed analog front-end buffer schematic diagram is given in 

Figure 31. Figure 32 shows HSPICE [56] simulated biasing voltage to photo detector 

when the input photo current is linearly increased. Also output current of the buffer is 

plotted along the input current sweep in Figure 33. 

All the simulations were performed with the recent 34 AMI Semiconductor 1.5 

µm Si-CMOS transistor models obtained through MOSIS [8], and the MOSIS run 

numbers are provided in Appendix E. 

The buffer biasing monotonically decreases while it remains relatively constant in 

the range of 0 - 1 µA. The change in biasing voltage can be ignored as long as the 

supplied bias voltage is large enough for the photo detector to be turned on, according to 

the photo detector characteristics given in the previous section. 

 



 

68 

 
Figure 31: Analog front-end buffer schematic diagram 

 

 

Figure 32: Output current of analog front-end with DC sweep 
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Figure 33: Bias voltage output to detector with input DC sweep 

Also the bandwidth and noise of the buffer are important characteristics, as shown 

in Figure 34 and Figure 35. The buffer is biased through the photo detector, and the 

frequency and noise responses are dependent on the input current level. Assuming input 

photo current range is 0 – 1 µA, the circuit biasing point is set to 0.5 µA.  
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Figure 34: Analog front-end frequency response with varying input current 

 

 
Figure 35: Analog front-end output equivalent noise with varying input current 
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The buffer bandwidth goes up to the order of 10 MHz at the biasing point, as 

illustrated in Figure 36, which is high enough for sensor applications. Input equivalent 

flat spectrum noise is also obtained, which is about 4×10-13 V/√Hz across the bandwidth 

at the biasing, as shown in Figure 37. The equivalent voltage was calculated from the 

output of an ideal trans-impedance amplifier attached to the buffer output. 

 

 

Figure 36: Analog front-end frequency response 
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Figure 37: Analog front-end input equivalent noise 

 

The simulated noise power is a noise floor for the buffer, where the circuit is not 

sensitive any more to the signal power below it. The simulated analog front-end allows 

more than 127 dB dynamic range with respect to the desired signal input range. The 

dynamic range is equivalent to about 20.8-bits resolution with digital representation, as 

shown in Figure 37. 

 

4.3 ∆Σ ADC Design 

The ∆Σ ADC has been an alternative way to implement ADC for instrumentation. 

In this section a first-order continuous-time ∆Σ ADC design and simulation outputs will 

be presented. Figure 38 shows ∆Σ converter function block diagram.  
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Figure 38: First-order ∆Σ ADC function block diagram 

 

Detector and analog front-end specifications and characterization were provided 

in the previous sections. A continuous-time integrator with a capacitor is used for the 

first-order filtering in the feed-forward path. A clocked latch works as a quantizer and 

unit-time delay. To maintain flexibility in the selection of decoding scheme, decoding 

function block is provided by external post-processing function block. The circuit 

schematic and layout of the design are provided in Figure 39 and Figure 40, and the 

active circuit area is 144 × 105 µm2, excluding capacitor area. 
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Figure 39: First-order ∆Σ ADC circuit schematics 
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Figure 40: First-order ∆Σ ADC circuit layout 

 

The design was extracted for spice simulation with parasitic capacitance. Figure 

41 is an example ∆Σ ADC HSPICE simulation output with sinusoidal current input. A 

plot in Figure 42 is ∆Σ oversampling converter output level acquisition HSPICE 

simulation of input current sweep from 0 to 1 µA, using MOSIS Si-CMOS model run 

number T0CU (see Appendix E). The decoding filter used in the plot is a first-order comb 

filter. 
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Figure 41: First-order ∆Σ ADC extracted circuit simulation output 

 
Figure 42: First-order ∆Σ ADC DC sweep output acquisition with comb filter 
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4.4 Single-slope ADC 

Single-slope ADCs have been used for instrumentation system-on-a-chip designs 

traditionally. This section provides a single-slope ADC design and simulation outputs. 

Figure 43 shows a single-slop ADC function block diagram. To simplify the design, the 

dotted function blocks are supported externally.  

 

 

Figure 43: Single-slope ADC function block diagram 

 

The designed single-slope ADC uses a trans-impedance amplifier to convert 

current input to voltage. The required gain is 5 V / 1 µA =  5×106 V/A. Using the same 

buffer given in earlier section, biasing circuit, amplifier stages, and sample-and-hold 
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compose analog front-end of the ADC as shown in the figure. The single-slope ADC 

analog front-end AC characteristics are shown in Figure 44 and Figure 45.  

 

 

Figure 44: Frequency response of single-slope ADC analog front-end 
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Figure 45: Single-slope ADC analog front-end input equivalent noise 

 

According to Figure 44, the nominal gain of the front-end is about 125 dB with an 

approximate signal bandwidth 10 kHz. As shown in Figure 45, the worst-case input 

equivalent noise with respect to input signal level is about –119 dB, which is equivalent 

to 19.5-bits resolution in digital representation. There is 8 dB more circuit noise involved 

in the single-slope ADC analog front-end compared with the ∆Σ oversampling ADC 

analog front-end. 

The single-slope ADC design schematic and layout are shown in Figure 46 and 

Figure 47. The active circuit takes 200 × 115 µm2, excluding capacitors. Analog front-

end, reference integrator, and comparator are included in the circuit, assuming counter 

and control logic are provided externally. 
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Figure 46: Single-slope ADC circuit schematics 
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Figure 47: Single-slope ADC circuit layout 

 

The layout was extracted with parasitic capacitance, and Figure 48 shows circuit 

HSPICE simulation output with sinusoidal input current. A DC-level acquisition HSPICE 

simulation of input current sweep from 0 to 1 µA is provided in Figure 49. The DC-

sweep acquisition plot shows variable gain error while the monotonicity of the output is 

maintained. Transistor model MOSIS run number T0CU (see Appendix E) is used for 

simulations. 
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Figure 48: Single-slope ADC extracted circuit HSPICE simulation output 

 
Figure 49: Single-slope ADC DC sweep output 

 



 

83 

4.5 Conversion Performance Comparison 

The theoretical results obtained in the previous chapters are used in this section to 

provide comparison arguments between designed ADCs. After the architectural 

comparison of ∆Σ ADC and single-slope ADC is discussed, the algorithmic decoding 

performances of two ADCs are also compared. Several simulations with varying circuit 

environments will be presented to demonstrate robustness of ADCs. 

 

4.5.1 Architectural Comparison of ADCs 

Let us assume that the input signal bandwidth is 10 Hz. Among several input 

signal models proposed, the strictly band-limited signal model will be useful to 

demonstrate the effect of signal band-limitedness. The analog front-ends discussed in 

Appendix C are used for analog front-end models. All frequencies are normalized to the 

unit frequency (see Appendix B.1.2 for frequency normalization) to simplify the numbers. 

A first-order LPF with cut-off frequency 1 is used for ∆Σ ADC anti-alias LPF, and a 

sixth-order Butterworth LPF with cut-off frequency 0.4 is used for single-slope ADC 

anti-alias LPF. For the simplicity of comparison, both anti-alias LPFs are assumed to be 

noiseless, which would favor single-slope ADC. Figure 50 and Figure 51 show available 

SNR plots of ∆Σ ADC and single-slope ADC. Variables for the plots are input noise 

power and input signal cut-off frequency of signal model A defined in Appendix C.  
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Figure 50: ∆Σ ADC available SNR  

 
Figure 51: Single-slope ADC available SNR  
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The plot shows that single-slope ADC suffers extensive loss of SNR due to signal 

aliasing, even with the sixth-order anti-alias LPF. The amplifier used in the analog front-

end of single-slope ADC adds more noise than that of ∆Σ ADC, and the available SNR 

with optimistic input signal cut-off frequency is worse than ∆Σ ADC. ∆Σ ADC takes 

advantage of full signal dynamic range by employing simpler analog front-end. 

Oversampling of input signal enables effective signal aliasing rejection with the simple 

first-order anti-alias LPF. 

 

4.5.2 Algorithmic Comparison of ADCs 

An oversampling ratio for a clocking frequency is equivalent to a given time 

period of a Nyquist A/D conversion. Both ∆Σ ADC and single-slope ADC have 

maximum available clocking frequency. The maximum operating clock frequency of 

single-slope ADC is determined by the operation speed of counter, control logic, and flip-

flops, while that of ∆Σ ADC is mainly constrained by comparator and flip-flop in the 

given designs. The single-slope ADC maximum frequency can be increased by adopting 

higher-speed adder, sacrificing circuit area, design complexity, and power consumption. 

For a given oversampling ratio, mean-squared error of data conversion output is a 

measure of how much sensitivity an ADC has. Figure 52 shows a comparison between 

ideal single-slope ADC sensitivity and ideal ∆Σ ADC sensitivity.  
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Figure 52: Decoding algorithmic comparison of ADCs 

 

As discussed in the Appendix B, the performance of ∆Σ ADC is highly dependent 

on the decoding algorithm. A square filter, which is equivalent to first-order comb filter, 

or averaging filter, is basically a counter, and it performs worse than single-slope ADC 

by 3dB. The comb filter and single-slope ADC performances are increased by 3dB per 

twice oversampling. The advantage of ∆Σ ADC is that it has several alternative decoding 

schemes with various algorithmic complexities. As shown in the plot, the optimal filter 

[50] and the proposed algorithm (see Chapter 3) outperform single-slope ADC algorithms. 

The gain of these two schemes increases by more than 9 dB per twice oversampling. 
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4.5.3 ADC Robustness Comparison with Simulations 

The comparisons provided so far used performance measures such as SNR to see 

how much sensitivity an ADC would produce. The robustness test of an ADC can be 

demonstrated by changing circuit environments to observe how much the performance 

and the designed characteristics maintained. Also circuit performance dependency on 

wafer device model variations should be minimized to enhance yield per wafer. 

Figure 53 shows the DC-level acquisition sweep of ∆Σ ADC with temperature 

sweep from 0 º to 100 ºC. The plot shows highly linear analog-to-digital converted 

outputs with temperature sweep. It is obvious that ∆Σ ADC is robust against temperature 

variations. 

 

Figure 53: ∆Σ ADC DC sweep with temperature sweep 0-100ºC 
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Figure 54 shows DC-level acquisition sweep of designed single-slope ADC with 

temperature sweep of 20 – 30 ºC. The converted output shows a huge drift as temperature 

increases, and it suggests that the given single-slope ADC design is highly temperature 

dependent. To enhance temperature independency in single-slope ADC design, a 

temperature compensation technique should be incorporated, though achieving high-gain, 

low-noise, stable, and temperature stable circuits would give rise to a complicated 

optimization problem. 

 

 

Figure 54: Single-slope ADC DC sweep with temperature sweep 20 – 30 ºC 

 

One device model is not enough to ensure that a circuit design would operate 

properly with circuit fabrication. Wafer to wafer variations should be taken into account 



 

89 

for a design to be robust and reliable. A set of recent AMI Semiconductor 1.5 µm Si-

CMOS process transistor models were obtained through MOSIS [8], and the given ADC 

designs were simulated with each model. Figure 55 and Figure 56 show DC-level 

acquisition sweep of ∆Σ ADC and single-slope ADC with 34 recent Si-CMOS transistor 

models. While ∆Σ ADC shows model invariant DC-level acquisition performance, 

single-slope ADC performance depends on transistor model extensively. Both 

temperature and model dependency of single-slope ADC comes from trans-impedance 

amplifier characteristics. Simulation result suggests that the amplifier should be designed 

carefully and the biasing of amplifiers should be intelligent. 

 

Figure 55: ∆Σ ADC DC-level acquisition sweep with 34 CMOS transistor models 
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Figure 56: Single-slope ADC DC-level acquisition sweep with 34 CMOS transistor 

models 

 

Another important issue in a real A/D conversion circuit is clock jitter. With a 

varying signal, the maximum allowed clock jitter is given as (17) [15]. Using the 

equation, the reduction in SNR due to the clock jitter can be obtained as (18) [15]. The 

reduction in Nyquist ADC SNR with clock jitter is plotted in Figure 57. 

 

(17): ∆tmax =
2−n

πf in

 

(18): 
2log2

])/62[1log(02.6 TSNR
n

reduction
∆+

×=
π  
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Figure 57: Nyquist ADC SNR degradation with clock jitter 

 

The effects of clock jitter in ∆Σ ADC have been analyzed in several studies, and 

the solution depends on the definition of jitter and the form of ∆Σ converter [57-59]. To 

get statistical analysis, a randomized clock jitter is generated and given to a simulation 

clock input, whose duty cycle is 0.25. An example of randomly generated clock jitter eye 

diagram is shown in Figure 58. In the eye diagram, the random numbers have Gaussian 

distribution with zero mean and standard deviation σ  = 2×10-2. 
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Figure 58: Randomly generated clock jitter example 

 

For a generated Gaussian random number with zero mean and standard deviation 

σ, the amount of jitter was obtained by multiplying the generated random number by 

clock period. For example, a random number x = 2×10-2 is generated with given σ and 

the clock period is T = 1×10-6, which is f = 1 MHz in frequency. Then the amount of jitter 

given to simulation is xT = 2×10-8. Every fall and rise edge of each clock is jittered 

randomly and independently in this way. For each given standard deviation σ, 20 sets of 

randomly jittered clocks were supplied to DC-level acquisition sweep simulations to get 

statistical data. The simulation clock period was 0.5 µsec and each simulation was 280 

clock cycles long. Each output was filtered with a sinc filter to estimate input value. For 

each σ, mean-squared error was obtained and Figure 59 shows the simulation output. The 
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range of output is [0, 28-1=255] for the plots. The 8-bits resolution Nyquist sampling 

ADC mean-squared error (MSE) plot with clock jitter is also given in the figure for 

comparison. The figure shows that ∆Σ ADC is less affected by jitter, and the converter 

resolution is not degraded in the given RMS jitter noise range since MSE remains below 

0 dB. There will be a rapid performance degradation with ∆Σ ADC when a greater jitter 

noise is applied [57, 58]. 

 

 

Figure 59: ∆Σ ADC available SNR with jitter noise 
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4.6 Sensor System-on-a-Chip Fabrication and Integration 

A SoC with embedded Si-CMOS photo detector arrays and integrated mixed 

signal processing system was fabricated with AMI Semiconductor 1.5 µm standard Si-

CMOS process through MOSIS, as shown in Figure 60.  

 

 

Figure 60: Fabricated chip photo 

 

The chip size is 4.6 × 4.7 mm2 and it has several variations of detector arrays such 

as PiN and BJT photo detectors. Data converters included in the chip are 8 parallel ∆Σ 

ADCs. Several configurations for photo detectors were designed on the chip, and the 

photo detector pixel size is 8 ×  8 µm2. Each array has 24 or 48 photo detectors and the 
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width of the array is about 192 µm. Each photo detector has its own analog front-end 

with a switch to turn it on and off. The addressing of the photo detector can be described 

as shown in Figure 61, where a group of 8 photo detectors are connected to 8 parallel 

analog-to-digital converters with 8 parallel electrical switches. 

 

 

Figure 61: Photo detector array addressing diagram 

 

Optical interferometric waveguides were integrated using SiO2/Si3N4/SiO2 with 

PECVD on the Si-CMOS circuit, as shown in Figure 62. Figure 63 shows the coupling of 

external laser into the waveguide. Sensing arm of waveguide is patterned with 

Hexafluoroisopropanol (HFIP). With several selected materials and knowledge-based 
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pattern recognition algorithm, this interferometric waveguides and the circuit can be a 

sensor system for aqueous and gaseous materials. 

 

 

Figure 62: Integrated Mech Zender interferometric waveguides 
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Figure 63: Laser coupling into integrated waveguide 

 

4.7 ∆Σ ADC Sensitivity Measurement 

The fabricated chip can take an electrical current input instead of detector current 

input through the selection switches. A clock signal is generated with Tektronix data 

pattern generator DG2020A [60], and the output data is collected by National Instrument 

PCI-DIO-32HS data acquisition unit [61]. All the circuit-biasing voltages and currents 

are supplied by Keithley 236 source-measure unit [62]. Also electrical current input is 

controlled by two separate source-measure units. Beginning at 0.1 µA, differential 

currents are added to input. The collected output through first-order comb filtering is 

shown in Figure 64.  
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Figure 64: ∆Σ ADC sensitivity measurement with electrical input 

 

The measurements are taken 10 times per input level, and the averaged input and 

standard deviation are plotted in the figure. According to plot, the fabricated ∆Σ ADC 

circuit is able to sense current down to the order of 10 pA against noise. The noise power 

is inferred through standard deviation, assuming the noise is Gaussian. The noise is not 

necessarily circuit noise since the accuracy of source-measure unit is ±(0.21 %+20 pA) at 

100 nA, which is equivalent to ±230 pA. The measured sensitivity is better than reported 

current input sensor array applications [63]. 

Since the actual signal reaches the analog front-end through the photo detector, 

optical sensitivity measurement would provide the actual sensor system sensitivity. Laser 

attenuated through optical attenuator was coupled into single mode optical fiber, and then 

focused onto a photo detector. The optical power came out of the single mode fiber was 
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measured with Newport 1835-C calibrated optical power meter [64]. The collected data 

was filtered through first-order comb filter and the result is plotted in Figure 65.  

 

 

Figure 65: ∆Σ ADC sensitivity measurement with optical input 

 

The plot shows that the fabricated data converter circuit can detect less than 10 

nW laser input to detector. One thing to be mentioned is that not all optical power is 

actually coupled into photo detector from optical fiber since it is coupled through air. 

According to the derived standard deviation, the plot suggests that ∆Σ ADC sensor 

system would be able to sense down to 100 pW laser power. 
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4.8 ∆Σ ADC Sensor System Measurement 

A complete SoC sensor system requires the integration of various sophisticated 

optical components such as edge-emitting laser, interferometric waveguide, etc. Not only 

does each component require cutting-edge technology, but also the components 

integration itself requires challenging processes. A demonstration of sensor SoC was 

performed with the fabricated chip and the integrated interferometric waveguide. The 

sensor system testing set up diagram is shown in Figure 66.  

 

 

Figure 66: Vapor sensor system block diagram 
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The waveguide integrated chip was placed in a sealed chamber, and HeNe laser 

was coupled with lens into the waveguide. The optical alignment was achieved through 

microscope and 3-dimensional stage. Precise concentrations and flow rates of volatile 

analyte chemicals were delivered to the test chamber with nitrogen gas carrier stream, 

which is vapor in this case. The circuit output and relative humidity was collected by a 

data processing unit. With the given set up, vapor was turned on and off at 20 minutes 

and 75 minutes from the beginning of experiment, and the processed data is plotted in 

Figure 67. In the plot, the explicit changes of output are observed with slow varying noise, 

which can come from laser drift, thermal expansion of metal stage, epoxy and FR4 board 

responses to vapor, and low-frequency circuit noise, etc.. 

 

Figure 67: Vapor sensor system measurement 
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4.9 Summary of Case Study 

The sensor SoC integration requires optical components, such as waveguide, laser, 

and photo detector. Integration of these components requires specialized know-how and 

considerations to be compatible with each other. The comparison of designed ADCs 

shows that there are more benefits with ∆Σ ADC than with single-slope ADC in circuit 

area, robustness, and sensitivity. The fabricated ∆Σ ADC was tested for sensitivity, and it 

proved a vapor sensor SoC successfully with integrated interferometric waveguide. 
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Chapter 5   

CONCLUSION 

 

5.1 Future Research 

As shown in the sensor system demonstration in Chapter 4, a fully integrated 

sensor SoC could be attained if a laser, such as an edge-emitting laser, were integrated on 

the chip. It will remove all mechanical noises involved in the testing set up, while the 

noise of integrated laser would remain an issue to go over. A laser driver that biases the 

laser also contributes noise to the laser. The laser and driver noise modeling will reveal 

whether 1/f noise of light source can be ignored, or whether flat spectrum noise of light 

source is low enough to provide enough sensitivity [65]. In case 1/f noise is a major noise 

source for the measurement and the flat noise spectrum is low enough that a better 

sensitivity is available at higher sampling frequency, the lock-in operation of signal 

source and ADC can be useful to achieve better sensitivity [66, 67]. 

There are various ways to implement the lock-in amplifier. The oscillator can be 

implemented with analog or digital circuitry. The receiver demodulation of received 

signal also can be performed in analog or digital domain. As a SoC, with light source 

driver and receiver demodulator on the same system, full phase information is available. 
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Therefore, the phase-locking of transmitter and receiver can be established easily. While 

the spectral purity of oscillation can be a problem, digital sources are useful to produce 

almost infinite Q-factor oscillation as long as a good filtering is provided [68]. 

∆Σ modulation concept provides a wide variety of choices for lock-in mode 

sensor operation. Band-pass ∆Σ [69, 70] ADC and high-pass ∆Σ [71, 72] ADCs enable a 

very simple demodulation in digital domain. Also the signal transmitter section can be 

implemented with high-fidelity ∆Σ DAC [73]. To achieve higher-frequency operation, 

since the switched-capacitor technology has a speed limit, continuous-time filters should 

be used for ∆Σ converters. Though radio frequency continuous-time filter experiences 

more circuit noise than switched-capacitor technology, several breakthroughs, such as on-

chip integrated commercial level wireless transceivers and band-pass ∆Σ converters, have 

been reported [68, 74]. 

 

5.2 Conclusion 

This dissertation presented the frequency domain modeling of the analog front-

end of ADC and the time domain modeling of ADC as an encoder and decoder. The 

analog front-end modeling of ADC provided the architectural comparison of various 

ADC configurations, and it also proved the statistically worst-case available ADC 

performance with stationary process assumption on input signal. The modeling produced 
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the quantitative analysis of analog front-ends, and it showed the architectural advantage 

of oversampling data converters. 

The perspectives that an ADC can be modeled as a communication channel or a 

CODEC provided a general ADC model for both Nyquist sampling ADC and 

oversampling noise-shaping ADC. Also a nonlinear decoding algorithm for ∆Σ ADC was 

proposed, and the algorithm performance was demonstrated. The proposed method 

outperformed known linear and nonlinear decoding schemes. 

A decoder-centered ADC and an encoder-centered ADC were designed for SoC 

application, and both were analyzed with the proposed theoretic models and tools. Also 

the robustness and flexibility of the designs were examined. The ∆Σ ADC design was 

fabricated with embedded photo detector arrays through the Si-CMOS process. The 

electrical and optical sensitivities of the circuit were measured. Also a sensor SoC was 

demonstrated with integrated interferometric waveguide. 
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Appendix A    

DECODER-CENTERED ADC 

 

A.1 Single-Slope Conversion 

The single-slope serial ADC and dual-slope serial ADC can be selected as 

comparison standards since they have the simplest concepts and implementations. In SoC 

sensor applications, this type of converter might be used because of its small size and low 

power consumption.  

Single-slope ADCs search linearly from the lowest value to the highest value, or 

vice versa, to determine which digital code would represent the input analog value best. 

The single-slope ADCs have many different implementations and a basic functional 

block diagram is shown in Figure 68. The integrator and counter are both set to zero 

output as initial conditions. When an input value is sampled and held, the counter starts 

and the integrator collects a small reference value until the integration output exceeds the 

input value as shown in Figure 69. The counter output is the A/D converted value. 
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Figure 68: Single-slope ADC function block diagram 

 

Figure 69: Single-slope ADC integrator output waveform 
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The single-slope converter is the simplest and the most intuitive ADC. The major 

components are sample-and-hold, integrator, comparator, counter, and control logic. The 

conversion is slow since it is a linear search process. The precision required of the 

integrator, reference value, and comparator will dominate conversion speed and 

sensitivity. The integration of reference would band-limit noise to reduce the effective 

noise. The worst case conversion time is LT, where L=Vsupply/Vref is the number of 

countable levels and T is the clock period [11, 12, 15, 17]. 

There are many examples of use of this design in the literature due to its 

simplicity and compactness in spite of the limited resolution and slow conversion time. 

Implementations are found in CCD or CMOS image sensors and multichannel parallel 

converters. The reported resolutions are 8 - 12 bits with 10 - 128 µsec conversion time [9, 

37, 41]. Table 7 summarizes single-slope ADC implementation examples. 

 

Table 7: Single-slope ADC implementation examples 

Resolution (bits) Conversion Time (µsec) Application 

12 10 16 Channel Parallel ADC [9] 

8 128 32 by 24 pixels CCD [41] 

8 16.3 128 by 128 pixels CMOS [37] 
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A.2 Dual-Slope Conversion 

The concept of dual-slope conversion is identical to single-slope conversion, 

except that it uses upward and downward slope at the same time to reduce the effect of 

nonlinearity and inaccuracy of the slope. Figure 70 shows the functional block diagram of 

dual-slope converter and Figure 71 shows the integrator output waveforms of dual-slope 

converter.  

 

 

Figure 70: Dual-slope ADC function block diagram 
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Figure 71: Dual-slope ADC integrator output waveform 

 

After the input value is sampled and held, the integrator output is set to Vgnd to 

initialize it. Then Vin is integrated for Nref clock cycles, after which, the counter is reset to 

0, and -Vref is applied to integrator input instead of Vin. The integration of -Vref continues 

until integrator output reaches Vgnd, while the counter is counting clock cycles. The input 

Vin estimation can be found from the counter output Nout, as in (19) [11-13, 15, 17]. 

 

(19): Vin =
Nout

Nref

Vref  
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It has been shown that the analog integration inherent in the slope integration 

conversion process reduces the effect of noise. The major source of conversion error in 

dual-slope ADC is the offset error in the integrator, and there are several algorithms to 

reduce or cancel the offset error [75, 76]. 

Dual-slope conversion is widely adopted for the precise instrumentation 

applications. The literature contains examples demonstrating 12 - 16 bits resolution and a 

variety of conversion times depending mainly on the IC fabrication process chosen [10, 

42, 77, 78]. A summary of implementation examples is shown in Table 8. 

 

Table 8: Dual-slope ADC implementation examples 

Resolution (bits) Conversion Time Application 

12 50 µsec Medical Instrumentation [10] 

12 0.41 µsec Micro-instrumentation [42] 

14 15 µsec A/D and D/A Calibration [77] 

16 2.5 µsec Time-to-digital Converter [78] 
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A.3 Iterative Algorithmic Conversion 

The iterative algorithmic ADC uses a binary search process to determine a digital 

code that best represents analog input value. It has been used to implement ADC since 

the 1960's, and partial and full integrations were completed in 1970's. It is the most time-

efficient algorithm after the flash type converters [79-82]. 

A functional block diagram of an iterative algorithmic ADC is shown in Figure 72. 

Initially, the input voltage Vin is sampled and held for the comparator, which will 

generate a comparison result with Vref. The error between the sampled value and the 

comparator output is doubled and sampled for the next iterative operation cycle. 

 

 

Figure 72: Iterative algorithmic ADC function block diagram 
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With this scheme, a small error in the earlier cycle propagates with multiplication 

through the cycles and causes error consequently. Error is caused by the mismatch of 

passive components such as capacitors, the offset of comparator and multiplier, and also 

by the inaccuracy of multiplication, subtraction, and sample-and-hold circuit. 

The iterative algorithm conversion shares the same concept with pipelined 

algorithmic ADCs and successive approximation ADCs. The pipelined ADC is an 

unfolded version of iterative algorithm conversion in time. It is appropriate for a higher-

speed application. The successive approximation ADC does not need multiplication nor 

subtraction, and it requires longer conversion time and an accurate DAC [11, 12, 15, 17]. 

Because of the large area of the pipelined and successive approximation converters these 

are not considered for the current small area SoC sensor application. 

The implementations of iterative algorithm conversion in the literature show 9 – 

14-bits resolutions with various sampling rates depending on the process feature size. In 

many cases, major concern was to take care of the mismatch problems to get higher 

resolution [38-40, 83]. There has been intensive research to enhance the resolution of 

iterative algorithmic ADC through self calibration and dynamic element matching [84, 

85]. Generally speaking, the conversion speed of this type of converters is faster than the 

linear algorithms such as single and dual-slope converters, and the resolution is lower that 

that of dual-slope converter. A summary of implementation examples is shown in Table 9. 
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Table 9: Iterative algorithm ADC implementation examples 

Ref. Resolution 
(bits) 

Sampling 
Rate 

Area Power Process 

[83] 12 8 kHz 1.55 mm2 17 mW 5 µm CMOS 

[39] 10 40 MHz 3.99 mm2 85 mW 0.8 µm CMOS 

[40] 9 5 MHz 5.48 mm2 180 mW 3 µm CMOS 

[38] 14 10 MHz 19 mm2 219 mW 0.8 µm CMOS 
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Appendix B    

∆Σ ENCODER-CENTERED ADC 

 

B.1 ∆Σ Encoder 

The ∆Σ CODEC is used because it has a quantization noise shaping property that 

enables highly accurate low-speed converters in conjunction with oversampling and 

digital signal processing. Noise shaping is a technique to relocate quantization noise 

power to a disposable (high) frequency band to increase converted SNR in the signal 

band. Oversampling is a concept that uses a higher sampling rate than the necessary 

Nyquist rate to enable a digital filter to enhance the SNR of an ADC by removing high 

frequency out of signal band noise such as relocated noise due to noise shaping [13, 15, 

17, 26, 29]. 

The origin of the ∆Σ modulation concept goes back to 1950's and the 

development of the ∆Σ has gone through several innovations [22, 26, 86-89]. One of the 

earlier forms of ∆Σ conversion can be found with delta modulation, an encoding scheme 

for communication channel that uses oversampling and differential encoding by a single 
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quantization step as shown in Figure 73. It has been shown that this method suffers from 

slope overloading and granular noise effects as shown in Figure 74 [90]. 

 

 

Figure 73: Delta modulation signal flow diagram 
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Figure 74: Delta modulation output waveform 

 

B.1.1 Quantization Noise Models 

The quantization noise spectrum can be shown to be approximately flat for high-

resolution converters. The root-mean-squared (RMS) value of quantization noise is 

qrms=∆/√12, where ∆ is a quantization step size of ADC. All of the quantization noise 

power will be mapped on the entire spectrum [-fs/2, fs/2] when a signal is sampled with 

the sampling frequency fs. The power spectral density of the sampled quantization noise 

is given in (20).  

 

(20): Q( f ) =
qrms

2

f s
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There are several assumptions inherent in (20). It assumes the signal is random 

and uniformly distributed, that there are enough levels of quantization to prevent 

saturation, and that the quantization step size ∆ is small. Examples of quantization error 

of sinusoidal wave with different number of quantization levels in time and frequency 

domain are given in Figure 75 and Figure 76. A rigorous mathematical analysis without 

any assumptions on noise also verifies that the approximation is good enough for many 

cases [26, 91-93]. 

 

 

Figure 75: Quantization error in time domain with different quantization levels 
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Figure 76: Quantization error in frequency domain with different quantization 

levels 

 

B.1.2 Oversampling 

A frequency response of a system or a power spectral density of a signal can be 

normalized to an arbitrary frequency for a fair comparison between the systems or the 

signals. The normalization can be done to a frequency fN or to a unit frequency 1. The 

unit frequency will be more intuitive than the fN in many cases since it reduces a variable 

in the expressions and plots, as shown in Figure 77. For a continuous-time signal band-

limited to fM, the sampling frequency fs must satisfy fs≥2fM for a lossless reconstruction 

of original signal according to the Nyquist theorem. As far as the sampled data keeps 

sampling period information, it remains in sampled frequency domain. If sampling time 

information is removed, sampled sequence can be aligned to unit time, therefore the 
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frequency of signal is normalized to discrete-time frequency as shown in Figure 78 [94, 

95]. 

 

Figure 77: Normalized frequency concept diagram 
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Figure 78: Sampled frequency concept diagram 

 

Let's assume an ideal ADC that has a fixed number of quantization levels and 

does not have a conversion speed limit. Further, assume the input signal of interest is 

strictly band-limited to fM and Nyquist sampling frequency is given as fN=2fM. If the 

signal is sampled at the Nyquist rate then the noise will be as in (20), however if a higher 

sampling rate is used then, by (20), the quantization noise power spectral density will be 

reduced by 1/2 (3dB) every time the sampling frequency is doubled, as a result the in-

band signal-to-quantization noise ratio is increased by 3dB every time the sampling 

frequency is doubled, as long as the out-of-band noise power is later removed by digital 

filtering, as shown in Figure 79. 
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Figure 79: Oversampling concept diagram 

 

B.1.3 ∆Σ Encoding Analysis 

A block diagram of the first-order ∆Σ noise shaping converter is shown in Figure 

80. The '∆' comes from the negative feedback of the output and the 'Σ' comes from the 

inner integrator. Both Σ∆ and ∆Σ are commonly used at the same time in the literature 

[26, 29]. It differs from the delta modulator mainly in the placement of the integrator. The 

location of the integrator in the analog domain before the quantizer makes for a simple 

encoder implementation. 
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Figure 80: Block diagram of the first order ∆Σ ADC 

 

The output y[n] can be solved as (21) in discrete-time domain and as (22) in z-

domain. The quantization noise shaping appears in the difference term q[n]-q[n-1] in (22), 

which is a first-order high-pass filter in the frequency domain. If the quantization noise 

spectrum is flat, (as is true for random input and high resolution) then the output 

quantization noise will have the same spectrum as the filter frequency response. If more 

integrators are used, an N-th order noise shaping filter will result as in (23). The 

quantization noise shaping spectrum plots with the filter order N=1, 2, 3 are shown 

normalized in Figure 81.  

 

(21): y[n] = x[n −1]+ q[n]− q[n −1] 
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(22): )()1()()( 11 zQzzXzzY −− −+=  

(23): )()1()()( 11 zQzzXzzY N−− −+=  

 

 

Figure 81: Shaped quantization noise spectra with noise shaping filter order N=1,2,3 

 

The actual quantization noise spectrum and shaped quantization noise spectrum 

are highly dependent on the input signal characteristics. A simulation of a random input 

signal to the first-order ∆Σ modulator generates the shaped noise spectrum as shown in 

Figure 82. This is somewhat like the theoretically estimated spectrum, although the 

limited sample size and random nature of the signal causes fluctuations of the spectrum. 
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Figure 82: Shaped quantization noise spectrum with first-order ∆Σ modulator and 
random input 

 

The noise power after ideal filtering of all signal above the Nyquist frequency and 

downsampling can be estimated as in (24), where N is the order of noise shaping and M 

is the oversampling ratio (OSR). Then we can now calculate the dynamic range of the 

ADC which is defined as the maximum signal power over the total noise power. The 

result is given in (25). The estimated SNR's of 1-bit quantization noise-shaping filter of 

order N=1, 2, 3 are plotted (using (25) to calculate SNR=DR) in Figure 83. The effective 

number of bits can be obtained by using the dynamic range of a Nyquist ADC (26), and 

solving for the number of bits B as shown in (27) [11]. 
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Figure 83: SNR versus oversampling ratio with noise sampling filter order N=1,2,3 
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To see how effective noise shaping is, consider a comparison between a 1-bit 

quantizer and a 1-bit noise-shaping converter. A 85-taps FIR Hanning window [94] is 

used to remove frequency content above Nyquist frequency for both converters. The 

results are shown in Figure 84 and Figure 85. The noise-shaping converter output, once 

filtered, is a much better reconstruction of the original signal, whereas the 1-bit quantizer 

output shows severe distortion due to quantization noise. 

 

 

Figure 84: Signal reconstruction with 1-bit quantizer 
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Figure 85: Signal reconstruction with 1-bit noise shaping quantizer 

 

B.1.4 Implementation Examples 

The ∆Σ encoder implementations have high degree of freedom in the order of 

noise-shaping filter, the resolution of quantizer, and the decimation filter. Some 

implementations have specific target applications such as integrated service digital 

network (ISDN) transceiver, hearing aid, and compact disk (CD) quality voice signal 

processing, while others implement the stand-alone ∆Σ ADCs. Various ∆Σ converters 

reported in the literature have 14 - 18 bits resolutions with 24 kHz - 12.5 MHz output 

rates as given in Table 10 [96-101]. 
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Table 10: ∆Σ ADC implementation examples 

Ref. Bit Res. Output Rate Order Quantization Process 

[96] 13 80 kHz 3 1 1.5 µm CMOS 

[97] 18 48 kHz 4 4 2.4 µm BiCMOS 

[98] 16 24 kHz 3 1 2 µm CMOS 

[99] 14 80 kHz 2 1 1.75 µm CMOS 

[100] 12 12.5 MHz 3 4 0.65 µm CMOS 

[101] 12 1.92 MHz 2 6 0.18 µm CMOS 

 

B.1.5 ∆Σ Encoding Issues 

In Figure 80, there are both a quantizer (ADC) and a digital-to-analog converter 

(DAC). These can be 1-bit or multi-bit converters and the ∆Σ ADC will still operate. One 

of the advantages of a 1-bit based ∆Σ converter is that it does not suffer from ADC or 

DAC nonlinearity issues since 1-bit ADC and DAC cannot exhibit nonlinear behavior. 

Another choice in the converter architecture is the order of the integration. First-

order ∆Σ modulators are easy to fabricate since they are less susceptible to the passive 

component matching errors and nonlinearity issues. 
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∆Σ modulators are seen to suffer from sub-signal frequency tone creation as 

shown in Figure 86 and DC input dependent conversion error as shown in Figure 87. Full 

nonlinear modeling of the modulator is necessary to explain these phenomena. 

 

 

Figure 86: Tones excited with first order 1-bit noise shaping ADC 
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Figure 87: DC error pattern of first order ∆Σ ADC 

 

As noted earlier, the dynamic range of ∆Σ ADC is determined in part by the OSR 

and the downsampling filter. This can allow flexible converter designs that can change 

their run-time operation mode, by changing OSR and downsampling scheme. The SNR 

of the converter can be adaptively updated to control the conversion accuracy and circuit 

power consumption. It adds more flexibility for implementations [11, 26, 102, 103]. 

By exchanging low-pass signal band and disposable high-pass noise band, a band-

pass ∆Σ converter can be designed with an appropriate noise-shaping filter, and it is 

attractive to communications systems [26, 104-106]. Also a high-pass architecture is 

beginning to be explored for direct conversion communication applications [71, 72, 107-

109]. 
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A high-order ∆Σ architecture converter might suffer from the instability even with 

a specific range of dc input. A stabilized high-order noise-shaping architecture can be 

obtained with several design techniques [86, 110-112]. A complete stability analysis of 

∆Σ conversion architecture is under development. There are several approximate and 

heuristic stability analysis techniques such as linear models, root locus, and describing 

function method [26, 29, 113, 114]. 

The concept of the shaping of quantization noise, the feedback of the quantization 

error, and the modulation of the input signal have been extended to the variety of signal 

processing schemes that mix analog and digital signal representations. Various steps such 

as poly-phase ∆Σ ADC, time-interleaved ∆Σ ADC, and space-time ∆Σ ADC have been 

taken in this direction [115-121]. 

 

B.2 ∆Σ Decoding 

The performance of ∆Σ conversion is highly dependent on the decimation filter or 

decoding scheme. Linear filters have been proposed for high-speed downsampling. These 

filters are based on a linear approximation of the modulator model and the resulting 

quantization noise. Most of these filters have been designed in the frequency domain. 

Considering the nonlinear nature of the ∆Σ converter, several nonlinear decoding 

algorithms have been devised by using time-domain observation of the modulator. The 
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time-domain approach uses the nonlinear state space system modeling and estimation of 

encoder internal states. 

 

B.2.1 Linear Decimation Filters 

The decimation of the modulated stream has been a speed bottleneck for high-

speed ∆Σ ADCs. The comb filter has been a frequently used approach for the first stages 

of decimation filtering since it can be implemented only with addition or subtraction 

making it very fast, and it can be simplified to yield a compact system using (28) as 

shown in Figure 88 [51, 122]. 

 

(28): D(z) =
1
N

z−i

i= 0

N−1

∑
 

 
 

 

 
 

k

=
1

N k
×

1
(1− z−1)k

× (1− z−N )k  
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Figure 88: Simplified decimation filter block diagram 

 

The difference blocks in the diagram runs have N times slower since it comes 

after N-bit downsampling. The accumulation block must be as fast as the sampling 

frequency. A group of carry save adders and a 2-bits per 1-bit representation have been 

proposed for the high-speed decimation of ∆Σ output [123, 124]. The accumulation block 

could overflow due to the nature of the operation and the limited word length of 

accumulator. It has been shown that the filter will be operational in spite of the overflow, 

as long as the arithmetic is modular [52]. 

In the way of finding optimum filters for ∆Σ modulator, a sub-optimal filter based 

on the spectral analysis of quantization noise was proposed as given in (29) [50]. This 

filter has been used as a comparison standard for many nonlinear decoding algorithms 



 

135 

[49, 53]. It is interesting that the sub-optimal filter impulse response is similar to 

triangular filter, which is the sinc2 filter, and the triangular filter is used as a comparison 

standard in several studies [48]. The filtering performance of the sub-optimal filter and 

sinc filters are compared in Figure 89 and Figure 90. 

 

(29): hN ,opt =
6(n +1)(N − n)
N(N +1)(N + 2)

,0 ≤ n ≤ N −1 

 

 

Figure 89: Impulse response of linear filters 
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Figure 90: Frequency response of linear filters 

 

B.2.2 Nonlinear Modeling and Decoding of ∆Σ Converter 

While switched-capacitor technology is used for the majority of ∆Σ converters, 

continuous-time filters are useful for the implementation of ∆Σ converter variations such 

as band-pass ∆Σ converters [69]. In most cases, continuous-time converter analysis is 

conducted in the discrete-time domain with the approximate discrete transformations 

replacing continuous-time transformations since this method benefits from the many 

established discrete-time signal processing techniques. Discrete-time modeling of ∆Σ 

encoders can adopt a general class of first-order linear discrete-time system models given 

in (30) and (31). In the equation, u is state space variable, x is input, and y is output. Let's 
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assume that A, B, C, and D are time-invariant, which means that they are fixed and do 

not change over time. 

 

(30):  
r 
u [n +1] = A

r 
u [n]+ B

r 
x [n]  

(31): ][][][ nxDnuCny rrr
+=  

 

Considering scalar analog input and scalar digital output of an N-th order 

interpolative ∆Σ modulator, the general first-order linear system equation can be turned 

into a nonlinear ∆Σ converter model given in (32). The linear system output y[n] is 

replaced with a nonlinear quantization function Q(c⋅u[n]) with the quantization error 

defined in (33). The transition matrix A has integrator connectivity information and the 

vector b has input signal distribution connectivity. The d maintains feedback connectivity 

from the quantized output to internal states. 

 

(32):  
r 
u [n +1] = A

r 
u [n] + b

r 
x [n]−

r 
d Q(

r 
c ⋅

r 
u [n]) 

(33): ])[(][][ nucQnucne rrrr
⋅−⋅=  
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This model is useful for the modeling of general class ∆Σ converters. A large 

number of high-order converters can be transformed to a diagonal form with this method. 

This transformation enables identification and stability analysis of the system [125]. The 

modeling method can be directly applied to several useful analyses on ∆Σ encoders. With 

the second-order encoder given in Figure 91, internal states of the converter can be 

plotted in state space for given input signals as shown in Figure 92. This geometric view 

of converter is useful for stability analysis and design verification [126]. 

 

 

Figure 91: Second-order ∆Σ modulator signal flow diagram 
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Figure 92: Converter state space trajectories 

 

To overcome linearly approximated decoder performance, several nonlinear 

modeling techniques for ∆Σ converter have been proposed, such as rational cycle model 

[53], auto-correlative state estimation [54], recursive stream analysis [48], Viterbi 

decoding [127], and optimal internal decision estimation [49]. It is interesting to find a 

study that proves that a democratic representation, which every bit output of ∆Σ encoder 

has equivalent weight, i.e. linear finite impulse response filter, cannot exceed the 

accuracy of non-democratic, or nonlinear algorithms [32, 127]. 
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Appendix C    

ANALOG FRONT-END MODELING 

 

C.1 Analog Front-end Models 

Figure 93 and Figure 94 illustrates several possible analog front-end models for 

ADC use. The traditional Nyquist sampling and oversampling front-ends have anti-alias 

low-pass filters and sample-and-hold before the ADC, as shown in Figure 93. The cut-off 

frequency fc of the LPF should be less than the desired highest signal frequency fM to 

avoid aliasing. For Nyquist sampling, the sampling frequency is fs=2fM and the sampling 

frequency for oversampling is fs,os=2NfM , where N is the oversampling ratio. There are 

several published implementation examples for Nyquist sampling whose analog front-end 

have only sample-and-hold [37-40], or do not include both anti-alias LPF and sample-

and-hold [41, 42]. Also the majority of published noise-shaping oversampling converters 

are not equipped with either the LPF or sample-and-hold [43-45]. These cases are 

modeled in Figure 94. 
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Figure 93: Nyquist and oversampling with anti-alias LPF and sample-and-hold 

 
Figure 94: Direct sample-and-hold and direct converter 
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C.2 Input Signal Models 

The input signal characteristics can be defined in several ways. A band-limited 

signal is a good model as a realistic input. Let's define the signal model A, Xin,A(f) with a 

flat spectrum density Pin,A and a strict band-limit fin,A as expressed in (34). When the 

bandwidth of the model is below Nyquist sampling frequency, it will show the effect of 

signal and noise propagation without signal aliasing. Also this model can be used to 

demonstrate the effect of signal aliasing on the performance of an ADC configuration, 

when the cut-off frequency fin,A is greater than Nyquist sampling frequency. The abrupt 

change of power density at fin,A makes the model rather ideal. 

The other approach to model input signal is a signal with flat spectrum over the 

infinite bandwidth. A signal model B, Xin,B(f) with a constant power density Pin,B is given 

in (35). The model is useful to model any undesired higher-frequency signal than Nyquist 

frequency that the designer didn’t take into account. Since the signal is not band-limited, 

it can be regarded as the statistically worst case or a white noise signal.  

 

(34): Xin,A =
Pin,A f ≤ f in,A

0 f > f in,A

 
 
 

 

(35): BinBin PfX ,, )( =  
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A pure random signal such as noise usually shows a flat spectrum and, as such, it 

will have constant power density over infinite frequency range, and thus deliver infinite 

power, which is totally unrealistic. A widely used way to imitate real signals is to filter 

white noise. Thus the third approach to model input signals is a low-pass white noise. 

This model produces a band-limited signal with the spectral continuity. Let's assume a 

first-order LPF with a cut-off frequency fin,C. Then the definition of input signal spectrum 

Xin,C(f) is given as in (36) with the spectrum density Pin,C at f=0 and the cut-off frequency 

fin,C. Power spectral density plots of input signal models are provided in Figure 95. 

 

(36): Xin,C ( f ) =
Pin,C

f 2 / f in,C
2 +1
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Figure 95: Input signal models. A=abruptly band-limited white noise, B=white noise, 
and C=first-order low-pass filtered white noise 

 

C.3 Input Buffer 

An input buffer can be an amplifier with gain or, often, a unity-gain buffer that 

separates signal source and front-end. The input buffer will have a gain and a bandwidth, 

and a first-order model low pass filter is an adequate model in most cases. When the 

bandwidth is higher than the signal bandwidth fM, the buffer works as an all-pass filter for 

signal, though it will filter noise in the higher-frequency region. If the gain-bandwidth is 

lower than fM, or it is almost same as fM, the buffer will filter out high-frequency in-band 

signal. Let's assume that the buffer transfer function model Hbf,k(f) has unity gain and 

bandwidth fbf=fM as shown in (37), where k is the order of the buffer block to represent 
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the effect of cascaded buffers. The frequency responses of Butterworth filters and 

cascaded first order buffers are compared in Figure 96. We see that cascaded buffers can 

produce significant in band attenuation of signal. 

 

(37): Hbf ,k ( f ) =
1

jf / fbf +1

 

 
  

 

 
  

k

 

 

 

Figure 96: Input buffer frequency responses 
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C.4 Models for Anti-alias LPF 

Higher the order of anti-alias LPF used, the more attenuation is available at fM and 

less signal power is attenuated in the signal band. The filters can be implemented with 

switched capacitors, or with active resistor and capacitor circuits. The implementation of 

high-order LPF is quite costly since it takes large area for parasitic components. Also the 

precision of filter poles is subject to the statistical variation of fabrication process. The 

noise induced by cascaded filter or switching of capacitors will also be increased with 

high-order filters. For this study, we assume k-th order Butterworth filters used as anti-

alias LPFs. The magnitude of the frequency response Hlp,k(f) for such filters is as appears 

in (38) with cut-off frequency flp,k. 

 

(38): | Hlp,k ( f ) |=
1

( f / f lp,k )2k +1
 

 

As an example let us examine the effect of filtering on the signal-to-noise ratio of 

a first-order filtered white noise input (previously called input model C). We assume the 

initial SNR before filtering is 100 dB due to 10-10 DC noise power density with input 

model C, and that the filter adds the same amount of noise power (assumed to be 1.0×10-

10) regardless of the filter order. The noise power densities were selected to demonstrate a 

16-bits resolution sensitivity application and to show the SNR degradation from the 

maximum available 100 dB SNR from the input signal. The optimal cut-off frequency for 
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maximum SNR can be obtained numerically as shown in Figure 97. For each filter order, 

the effect of a single stage buffer is also displayed. From the plot we see that a filter order 

of 2 greatly enhances SNR, and a buffer has little impact on the SNR. 

 

 

Figure 97: SNR improvement of Butterworth filters for band limited input C 

 

C.5 Modeling of Sample-and-Hold 

A simple voltage sampling and holding circuit is modeled as shown in Figure 98. 

The switch in the figure is turned on to track and sample the input voltage. After 

sampling, it is turned off to hold the sampled voltage for analog-to-digital conversion. 

With the switch turned on, the frequency domain representation of the current that goes 
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through the switch is given in (39), and the holding voltage Vsh(f) is obtained as given in 

(40) [11-13].  

 

 

Figure 98: Voltage sample-and-hold model 

 

(39): Iin =
Vin ( f )

RH +1/( j2πfCH )
 

(40): 
Vsh ( f ) = 1

j2πfCH

Iin ( f )

=
1

j2πfCH RH +1
Vin ( f )
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The holding capacitance CH must be large enough to avoid current leakage during 

holding cycle and it should be small enough to track the input voltage during sampling 

cycle. There is a trade-off between the tracking accuracy and the holding accuracy with 

the capacitor size. As shown in (40), the sample-and-hold circuit is a low-pass filter when 

the switch is on. The time constant of the filter is CHRH. To allow fast tracking, it should 

be small, and it should be small enough to avoid transient error, which should be smaller 

than the desired ADC quantization step. As mentioned, a smaller holding capacitor 

suffers more from capacitor leakage current. Also the smaller capacitance involves larger 

kT/C noise [65]. The transient characteristics of the buffer between vsh and vout should be 

taken into account. It must be fast enough to follow the sampled voltage, while the high-

order overshooting should be avoided for accurate analog-to-digital conversion [11-13]. 

A current integrating sample-and-hold front-end can be modeled in a similar way. 

For input current i(t), integration time T, and capacitance C, the sampled voltage v(t) is 

obtained as (41) in time domain and (42) in frequency domain. When Nyquist sampling 

frequency 2 is taken for the normalized signal band 1, the integrating time T is less than 

0.5. Figure 99 shows the frequency response V(f) with a first-order low-pass filter whose 

cut-off frequency is 0.5, as an asymptote. Capacitance C is 0.5 in the figure to adjust DC 

gain to 1. The figure shows that the current integrating sample-and-hold type circuits are 

low-pass filters in its operation. 

  

(41): [u(t) − u(t − T)]∗ i(t) = Cv(t) 
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(42): )2(
2

1)2(
2

fjI
fCj

efjV
fTj

π
π

π
π−−

=  

 

 

Figure 99: Current integrating sample-and-hold frequency response 

 

C.6 Available ADC SNR without Sample-and-Hold 

A sample-and-hold takes a critical role in Nyquist sampling ADCs. The 

importance of sampling timing and clock jitter already have been examined and analyzed 

[15, 25]. The absence of sample-and-hold can be treated as a worst case of sampling 

timing miss or clock jitter noise. 
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Let's assume A/D conversion of a sinusoid with oscillation frequency f0 and peak-

to-peak amplitude 1. Intuitively, higher the oscillation frequency, as high as 1/2 of 

Nyquist frequency fNyq, and greater the oscillation amplitude, ADC conversion error will 

be larger. The largest conversion error will occur when sinusoid crosses mean value 

during analog-to-digital conversion process. The actual amount of error introduced by an 

ADC will be highly dependent on the specific conversion algorithms. For example, 

single-slope ADC is likely to experience less error than algorithmic ADC since 

algorithmic ADC encodes exponentially while single-slope ADC encodes linearly. A 

single-slope ADC conversion error example is provided in Figure 100.  

 

 

Figure 100: Single-slope ADC conversion error example without sample-and-hold 
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Let's assume that input signal has bandwidth 1, and Nyquist frequency is fNyq = 2. 

A pseudo ideal ADC with infinite precision is assumed that its conversion takes whole 

sampling period and an input value is sampled and held during conversion. The 

conversion error of the pseudo ADC is difference between the converted output and the 

input value at the end of sampling period. Also a single-slope ADC with 210 = 1024 

counting levels is assumed for comparison. Mean-square errors of both ADCs are plotted 

over sinusoidal input frequency as shown in Figure 101. The plot claims that input signal 

should be band-limited to f0 = ∆ to avoid conversion error. Higher the precision of an 

ADC, lower the allowed sinusoid frequency for full resolution. Also conversion error is 

increase by 6dB when sinusoid frequency is increased by 2 times. An ADC with different 

conversion algorithm will show different mean-squared error. 

 

Figure 101: Single-slope and pseudo ideal ADC conversion error 
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C.7 Continuous-time ∆Σ ADC Model 

The property of first-order ∆Σ ADC can be described with an analog model as 

shown in Figure 102. In the diagram, A and B represents gain of input buffer and 

feedback path, and C is the capacitance value of integrator. The transfer function of the 

integrator and a delay with sampling period T is esT/sC in the s-domain. The model 

transfer function is given as (43). The model is can be replaced with the discrete-time ∆Σ 

ADC model (44), when the approximate transformation z≈esT and sT≈1-z-1 are performed 

and when A=C/T and A=B. The discrete-time model approximation z≈esT and sT≈1-z-1 

are valid only when the signal frequency is low compared to the sampling frequency [11, 

128]. 

 

Figure 102: Continuous-time ∆Σ ADC model 
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(43): 

Y(s) = Gx (s)X(s) + Gq (s)Q(s)

=
Be−sT

sC + Ae−sT X(s) +
sC

sC + Ae−sT Q(s)

=
e−sT

sT + e−sT X(s) +
sT

sT + e−sT Q(s)

 

(44): )()1()()( 11 zQzzXzzY −− −+=  

 

The frequency response of the signal transfer function Gx(s) is plotted to see the 

effect of the ∆Σ ADC as a signal filter as shown in Figure 103. Frequency is normalized 

with respect to the oversampling frequency fs,os/2=NfM, not to the maximum desired 

signal frequency fM as other diagrams are. A first-order LPF (dotted line in Figure 103 is 

an asymptote of Gx(f). When the frequency responses are normalized to the signal band, 

it becomes clear how higher oversampling ratio allows a wider signal bandwidth through 

as shown in Figure 104. This characteristic will become important as a means of band 

limiting the input signal. This allows ∆Σ ADCs to operate very well with no anti-alias 

filter. 
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Figure 103: Frequency response of continuous-time ∆Σ ADC model 

 
Figure 104: Continuous-time ∆Σ ADC frequency response normalized to signal 

band 
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Appendix D   

INFORMATION THEORY 

 

D.1 Entropy and Source Coding 

A/D conversion can be regarded as a communication channel that involves noise, 

encoding, and decoding. Information theory provides several useful concepts on 

quantization, signal source encoding and decoding.  

Let's assume a probabilistic experiment with a discrete source S as a random 

variable that takes symbols from a finite set of alphabet Γ given in (45). The probability 

distribution P(S=sk) of  Γ is given in (46) and (47). The amount of information obtained 

after an observation of the event S=sk is defined in (48), where the observation is 

regarded as a resolution of uncertainty. When the logarithm base is 2, the measure of 

information becomes binary digit, i.e. bit. Then entropy H(Γ) of a discrete memoryless 

source with alphabet Γ as an average information content per source symbol is defined as 

(49) [90, 129-131]. 

 

(45):  Γ = {s0,s1,L,sK−1} 



 

157 

(46):  P(S = sk ) = pk,k = 0,1,L,K −1 

(47): ∑
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The entropy H(Γ) of a discrete memoryless source is bounded as given in (50). 

When there is no uncertainty, e.g. probability pk=1 for some k and all other probabilities 

are zero, there is no information and H(Γ)=0. On the other hand, when all the events are 

equally probable, i.e. equiprobable, the upper bound as the maximum entropy 

H(Γ)=log2K is obtained, which means that it is the most difficult to predict an event. It 

can be easily shown that the entropy function H(Γ) is continuous, additive, nonnegative, 

and symmetric [90, 129-131]. 

 

(50): KH 2log)(0 ≤Γ≤  
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The ''information'' in information theory should be related to the uncertainty and 

the resolution of uncertainty rather than the traditional idea of words such as knowledge 

[90, 129-131]. In the source encoding perspective, Shannon claimed in the noiseless 

coding theorem that H(Γ) is the minimum average number of bits per source symbol 

required to represent a discrete memoryless source without loss [132]. 

 

D.2 Mutual Information and Channel Coding Theorem 

When channel output Y is observed with channel input X, a conditional entropy 

H(X|Y) is defined as (51). The conditional entropy represents the amount of uncertainty 

left about the input after the observation. Therefore the difference between H(X) and the 

differential entropy will be the uncertainty resolved about the input after observation. The 

quantity is called the mutual information I(X; Y) and it is defined in (52). The mutual 

information is symmetric and nonnegative, which means that one will not lose any 

information with output observation. When the mutual information is maximized over 

input probability distribution, it represents channel capacity of a discrete memoryless 

channel in bits per channel use, as defined in (53). When maximum channel symbol rate 

is Tc and source symbol rate is Ts, the average information rate is H(X)/Ts bits per second 

and channel capacity per unit time is C/Tc. Shannon's channel coding theorem or noisy 

coding theorem states that there exists a coding algorithm that enables zero probability of 

error transmission of data, when a relation given in (54) holds. This theorem only shows 
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that there is a scheme that achieves error-free communication and it does not shows a 

way to implement it [90, 129-132]. 

 

(51): H(X |Y) = H(X |Y = yk )p(yk )
k= 0

K −1

∑  

(52): );()();( YXHXHYXI −=   

(53): );(max
)(

YXIC
jxp

=  

(54): 
cs T

C
T

XH
≤

)(  

 

D.3 Differential Entropy and Information Capacity Theorem 

The differential entropy of a continuous random variable X h(X) is defined in (55). 

Not like the absolute entropy H(X) defined with a discrete source, the reference term ''-

log2∆x'' that goes to infinity as ∆ goes to 0 is discarded for practical purpose as shown in 

(56). The differential entropy is upper bounded as given in (57), where Gaussian random 

variable with variance σ2 attains maximum differential entropy. The definition of mutual 

information for continuous random variable X and Y is given in (58). 

 



 

160 

(55): h(X) = fX (x)log2

1
fX (x)
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For a discrete-time, memoryless Gaussian channel with transmission time T, band 

limit B, and power limit E[Xk
2]=P for all k, let's assume input signal Xk, additive white 

Gaussian noise Nk, and received signal Yk as (59), where K=2BT is the number of 

samples. The Gaussian noise has zero mean, power spectral density N0/2, therefore, 

variance is σ2=N0B. The information capacity is defined with the maximum mutual 

information over input distributions and power limit as given in (60). For the maximum 

capacity, Xk should be Gaussian with average power P. The differential entropy h(Yk) 

and h(Nk) are arranged as in (61) and (62) using property of Gaussian distribution. 

Therefore the information capacity in bits per transmission is (63) and capacity in bits per 

second is (64). 

 

(59):  Yk = Xk + Nk,k =1,2,L,K  
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Shannon's information capacity theorem claims that the capacity of a continuous 

channel with band limit B and power limit P is limited by these capacity relations, and 

that the given capacity of error-free transmission can be achieved through an encoding 

scheme. The transmitted energy per bit Eb can be defined with P=EbC to transform (64) 

into (65). The relation between C/B and Eb/N0 plotted in Figure 105 is called the 

bandwidth efficiency diagram [90, 129-132]. 

 

(65): Eb

N0

=
2C / B −1

C /B
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Figure 105: Bandwidth efficiency diagram 
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Appendix E   

SI-CMOS TRANSISTOR SPICE MODELS 

 

All circuit designs and simulations are based on AMI 1.5 µm n-well Si-CMOS 

chip fabrication services provided through MOSIS [8]. The process provides two poly 

layers, two metal layers, an NPN option, and PiP capacitors. 

 

E.1 MOSIS SPICE Models 

The following model list with run numbers is obtained from MOSIS web page 

[133]. 

T0CU    T14Z    T15L    T16Q    T16S 
T16V    T17D    T18K    T1AT    T1AZ 
T1CI    T1CL    T21M    T22X    T23F 
T24P    T26W    T27G    T28N    T28P 
T29V    T2AH    T2CR    T31A    T31E 
T32P    T32Q    T33Z    T34D    T35O 
T37C    T38F    T39T    T3AG 

 

E.2 MOSIS SPICE Model Run Number T0CU 

* DATE: Aug 23/01 
* LOT: T0CU                  WAF: 5114 
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* Temperature_parameters=Default 
.MODEL CMOSN NMOS (                                LEVEL   = 49 
+VERSION = 3.1            TNOM    = 27             TOX     = 3.06E-8 
+XJ      = 3E-7           NCH     = 7.5E16         VTH0    = 0.5461273 
+K1      = 0.9248171      K2      = -0.0746521     K3      = 7.3546504 
+K3B     = -1.3783456     W0      = 1E-7           NLX     = 1E-8 
+DVT0W   = 0              DVT1W   = 0              DVT2W   = 0 
+DVT0    = 0.6105593      DVT1    = 0.2813887      DVT2    = -0.3207057 
+U0      = 687.6635171    UA      = 2.222506E-9    UB      = 1.213885E-18 
+UC      = 5.939783E-11   VSAT    = 1.06244E5      A0      = 0.6091078 
+AGS     = 0.1475122      B0      = 2.455572E-6    B1      = 5E-6 
+KETA    = -5.207522E-3   A1      = 0              A2      = 1 
+RDSW    = 3E3            PRWG    = -0.0591643     PRWB    = -0.0365956 
+WR      = 1              WINT    = 7.73594E-7     LINT    = 2.483956E-7 
+XL      = 0              XW      = 0              DWG     = -2.100159E-8 
+DWB     = 3.664922E-8    VOFF    = -4.161505E-3   NFACTOR = 1.0577976 
+CIT     = 0              CDSC    = 0              CDSCD   = 0 
+CDSCB   = 4.95502E-6     ETA0    = -0.6952862     ETAB    = -0.2227648 
+DSUB    = 0.6107704      PCLM    = 1.3283099      PDIBLC1 = 8.983088E-3 
+PDIBLC2 = 1.979186E-3    PDIBLCB = 0.1            DROUT   = 0.0615405 
+PSCBE1  = 2.205899E9     PSCBE2  = 5.040015E-10   PVAG    = 0.2668387 
+DELTA   = 0.01           RSH     = 52.5           MOBMOD  = 1 
+PRT     = 0              UTE     = -1.5           KT1     = -0.11 
+KT1L    = 0              KT2     = 0.022          UA1     = 4.31E-9 
+UB1     = -7.61E-18      UC1     = -5.6E-11       AT      = 3.3E4 
+WL      = 0              WLN     = 1              WW      = 0 
+WWN     = 1              WWL     = 0              LL      = 0 
+LLN     = 1              LW      = 0              LWN     = 1 
+LWL     = 0              CAPMOD  = 2              XPART   = 0.5 
+CGDO    = 1.8E-10        CGSO    = 1.8E-10        CGBO    = 1E-9 
+CJ      = 2.807209E-4    PB      = 0.9642875      MJ      = 0.5323927 
+CJSW    = 1.202779E-10   PBSW    = 0.9809784      MJSW    = 0.1 
+CJSWG   = 6.4E-11        PBSWG   = 0.9809784      MJSWG   = 0.1 
+CF      = 0               ) 
* 
.MODEL CMOSP PMOS (                                LEVEL   = 49 
+VERSION = 3.1            TNOM    = 27             TOX     = 3.06E-8 
+XJ      = 3E-7           NCH     = 2.4E16         VTH0    = -0.8476404 
+K1      = 0.4513608      K2      = 2.379699E-5    K3      = 13.3278347 
+K3B     = -2.2238332     W0      = 9.577236E-7    NLX     = 2.924346E-7 
+DVT0W   = 0              DVT1W   = 0              DVT2W   = 0 
+DVT0    = 2.097586       DVT1    = 0.6808189      DVT2    = -0.0568857 
+U0      = 236.8923827    UA      = 3.833306E-9    UB      = 1.487688E-21 
+UC      = -1.08562E-10   VSAT    = 1.659328E5     A0      = 0.7884225 
+AGS     = 0.1890823      B0      = 3.435275E-6    B1      = 1.229777E-6 
+KETA    = -1.960186E-3   A1      = 0              A2      = 0.364 
+RDSW    = 3E3            PRWG    = 0.1155013      PRWB    = -0.3 
+WR      = 1              WINT    = 7.565065E-7    LINT    = 9.504967E-8 
+XL      = 0              XW      = 0              DWG     = -2.13917E-8 
+DWB     = 3.857544E-8    VOFF    = -0.0877184     NFACTOR = 0.2508342 
+CIT     = 0              CDSC    = 2.924806E-5    CDSCD   = 1.497572E-4 
+CDSCB   = 1.091488E-4    ETA0    = 0.15903        ETAB    = -0.0240819 
+DSUB    = 0.2873         PCLM    = 1.7338623      PDIBLC1 = 4.152377E-3 
+PDIBLC2 = 1E-3           PDIBLCB = -1E-3          DROUT   = 0.0707408 
+PSCBE1  = 3.324052E9     PSCBE2  = 1.718711E-6    PVAG    = 15 
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+DELTA   = 0.01           RSH     = 74.4           MOBMOD  = 1 
+PRT     = 0              UTE     = -1.5           KT1     = -0.11 
+KT1L    = 0              KT2     = 0.022          UA1     = 4.31E-9 
+UB1     = -7.61E-18      UC1     = -5.6E-11       AT      = 3.3E4 
+WL      = 0              WLN     = 1              WW      = 0 
+WWN     = 1              WWL     = 0              LL      = 0 
+LLN     = 1              LW      = 0              LWN     = 1 
+LWL     = 0              CAPMOD  = 2              XPART   = 0.5 
+CGDO    = 2.3E-10        CGSO    = 2.3E-10        CGBO    = 1E-9 
+CJ      = 3.021506E-4    PB      = 0.7425959      MJ      = 0.4286385 
+CJSW    = 1.472483E-10   PBSW    = 0.99           MJSW    = 0.1 
+CJSWG   = 3.9E-11        PBSWG   = 0.99           MJSWG   = 0.1 
+CF      = 0               ) 
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Appendix F    

MATLAB SCRPITS 

 

F.1 Architectural Performance Comparison Simulation Scripts 

F.1.1 Summarized Comparison Simulation with Signal Model A: 

AllCaseAComparison.m 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%Main Setting 
warning off MATLAB:divideByZero; 
k=1.38e-23; 
T=300; 
Nc=1e-10; 
tFidx=[0 0.002 200]; 
Pin=1; 
Fc=0.01:0.01:1.0; 
FtType=[6]; 
Fs=2; 
Kord=100; 
T0=0.5; 
C=1e-5; 
R=1; 
Nk=k*T/C; 
 
AllSnrNyq=zeros(3,length(Fc)); 
AllSnrOvs=zeros(4,length(Fc)); 
 
%Input Signal Generation 
Fidx=tFidx(2):tFidx(2):tFidx(3); 
SigIdx=find(Fidx==1); 
Bf=SigSpecGen(1,3,tFidx,Pin); 
SH=SigSpecGen(1,3,tFidx,Pin); 
SX=SigSpecGen(0,1,tFidx,Pin); 
NX=SigSpecGen(0,1,tFidx,Nc); 
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Lpf=zeros(1,length(SX)); 
SiBf=zeros(1,length(SX)); 
SiNBf=zeros(1,length(SX)); 
NiBf=zeros(1,length(SX)); 
NiNBf=zeros(1,length(SX)); 
SnrBf=zeros(length(FtType),length(Fc)); 
SnrNBf=zeros(length(FtType),length(Fc)); 
SnrOvBf=zeros(length(FtType),length(Fc)); 
SnrOvNBf=zeros(length(FtType),length(Fc)); 
 
for k=1:length(Fc), 
    for m=1:length(FtType), 
        Lpf=SigSpecGen(Fc(k),FtType(m),tFidx,Pin); 
        SiBf=((SX.*Bf).*Lpf).*SH; 
        SiNBf=(SX.*Lpf).*SH; 
        NiBf=((NX.*Bf+Nc).*Lpf+Nc).*SH+Nc+Nk; 
        NiNBf=(NX.*Lpf+Nc).*SH+Nc+Nk; 
        SpBf=sum(SiBf(1:SigIdx)); 
        SpNBf=sum(SiNBf(1:SigIdx)); 
        NpBf=[sum(SiBf(SigIdx+1:length(SiBf))) sum(NiBf(1:SigIdx)) 
sum(NiBf(SigIdx+1:length(SiBf)))]; 
        NpNBf=[sum(SiNBf(SigIdx+1:length(SiNBf))) sum(NiNBf(1:SigIdx)) 
sum(NiNBf(SigIdx+1:length(SiNBf)))]; 
        SnrBf(m,k)=10*log10(SpBf/sum(NpBf)); 
        SnrNBf(m,k)=10*log10(SpNBf/sum(NpNBf)); 
        SnrOvBf(m,k)=10*log10(SpBf/NpBf(2)); 
        SnrOvNBf(m,k)=10*log10(SpNBf/NpNBf(2)); 
    end 
end 
 
AllSnrNyq(1,:)=SnrBf; 
AllSnrOvs(1,:)=SnrOvNBf; 
 
%DirSHAnalCaseAVa 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%Main Setting 
warning off MATLAB:divideByZero; 
k=1.38e-23; 
T=300; 
Nc=1e-10; 
tFidx=[0 0.002 200]; 
Pin=1; 
Fc=0.01:0.01:1.0; 
BfType=[6]; 
Fs=2; 
Kord=100; 
T0=0.5; 
C=1e-10; 
R=1; 
Nk=k*T/C; 
 
%Input Signal Generation 
Fidx=tFidx(2):tFidx(2):tFidx(3); 
SigIdx=find(Fidx==1); 
Bf=zeros(size(Fidx)); 
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SH=SigSpecGen(1,3,tFidx,Pin); 
SX=SigSpecGen(0,1,tFidx,Pin); 
NX=SigSpecGen(0,1,tFidx,Nc); 
SiBf=zeros(size(SX)); 
SiNBf=zeros(size(SX)); 
NiBf=zeros(size(SX)); 
NiNBf=zeros(size(SX)); 
SnrBf=zeros(length(BfType),length(Fc)); 
SnrNBf=zeros(length(BfType),length(Fc)); 
SnrOvBf=zeros(length(BfType),length(Fc)); 
SnrOvNBf=zeros(length(BfType),length(Fc)); 
 
for k=1:length(Fc), 
    for m=1:length(BfType), 
        Bf=BfSpecGen(Fc(k),BfType(m),tFidx,Pin); 
        SiBf=(SX.*Bf).*SH; 
        SiNBf=SX.*SH; 
        NiBf=(NX.*Bf+Nc).*SH+Nc+Nk; 
        NiNBf=NX.*SH+Nc+Nk; 
        SpBf=sum(SiBf(1:SigIdx)); 
        SpNBf=sum(SiNBf(1:SigIdx)); 
        NpBf=[sum(SiBf(SigIdx+1:length(SiBf))) sum(NiBf(1:SigIdx)) 
sum(NiBf(SigIdx+1:length(SiBf)))]; 
        NpNBf=[sum(SiNBf(SigIdx+1:length(SiNBf))) sum(NiNBf(1:SigIdx)) 
sum(NiNBf(SigIdx+1:length(SiNBf)))]; 
        SnrBf(m,k)=10*log10(SpBf/sum(NpBf)); 
        SnrNBf(m,k)=10*log10(SpNBf/sum(NpNBf)); 
        SnrOvBf(m,k)=10*log10(SpBf/NpBf(2)); 
        SnrOvNBf(m,k)=10*log10(SpNBf/NpNBf(2)); 
    end 
end 
 
AllSnrNyq(2,:)=SnrBf; 
AllSnrOvs(2,:)=SnrOvNBf; 
 
%DirADCAnanl 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%Main Setting 
warning off MATLAB:divideByZero; 
k=1.38e-23; 
T=300; 
Nc=1e-10; 
tFidx=[0 0.002 200]; 
Pin=1; 
Fc=0.01:0.01:1.0; 
BfType=[6]; 
Fs=2; 
Kord=100; 
T0=0.5; 
C=1e-10; 
R=1; 
Nk=k*T/C; 
 
%Input Signal Generation 
Fidx=tFidx(2):tFidx(2):tFidx(3); 
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SigIdx=find(Fidx==1); 
Bf=zeros(size(Fidx)); 
SH=SigSpecGen(1,3,tFidx,Pin); 
SX=SigSpecGen(0,1,tFidx,Pin); 
NX=SigSpecGen(0,1,tFidx,Nc); 
SiBf=zeros(size(SX)); 
SiNBf=zeros(size(SX)); 
NiBf=zeros(size(SX)); 
NiNBf=zeros(size(SX)); 
SnrBf=zeros(length(BfType),length(Fc)); 
SnrNBf=zeros(length(BfType),length(Fc)); 
SnrOvBf=zeros(length(BfType),length(Fc)); 
SnrOvNBf=zeros(length(BfType),length(Fc)); 
 
WtBar= waitbar(0,'Processing'); 
for k=1:length(Fc), 
    waitbar(k/length(Fc),WtBar) 
    for m=1:length(BfType), 
        Bf=BfSpecGen(Fc(k),BfType(m),tFidx,Pin); 
        SiBf=SX.*Bf; 
        SiNBf=SX; 
        NiBf=NX.*Bf+Nc; 
        NiNBf=NX; 
        SpBf=sum(SiBf(1:SigIdx)); 
        SpNBf=sum(SiNBf(1:SigIdx)); 
        NpBf=[sum(SiBf(SigIdx+1:length(SiBf))) sum(NiBf(1:SigIdx)) 
sum(NiBf(SigIdx+1:length(SiBf)))]; 
        NpNBf=[sum(SiNBf(SigIdx+1:length(SiNBf))) sum(NiNBf(1:SigIdx)) 
sum(NiNBf(SigIdx+1:length(SiNBf)))]; 
        SnrBf(m,k)=10*log10(SpBf/sum(NpBf)); 
        SnrNBf(m,k)=10*log10(SpNBf/sum(NpNBf)); 
        SnrOvBf(m,k)=10*log10(SpBf/NpBf(2)); 
        SnrOvNBf(m,k)=10*log10(SpNBf/NpNBf(2)); 
    end 
end 
close(WtBar) 
 
AllSnrNyq(3,:)=SnrBf; 
AllSnrOvs(3,:)=SnrOvBf; 
AllSnrOvs(4,:)=SnrOvNBf; 

 

F.1.2 Signal Spectrum Generator: SigSpecGen.m 

function x=SigSpecGen(Fc,Type,tFidx,Pin) 
% 
Fidx=tFidx(2):tFidx(2):tFidx(3); 
switch Type 
    case 1, %flat spectrum 
        x=Pin*ones(size(Fidx)); 
    case 2, %ideal lpf 
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        x=(-sign(sign(Fidx-Fc)+0.5)+1)*0.5*Pin; 
    otherwise 
        if Type>=3, 
            x=Pin./(1+(Fidx/Fc).^(2*(Type-2))); 
        end 
end 

 

F.1.3 Buffer Frequency Spectrum Generator: BfSpecGen.m 

function x=BfSpecGen(Fc,Type,tFidx,Pin) 
Fidx=tFidx(2):tFidx(2):tFidx(3); 
switch Type 
    case 1, %flat spectrum 
        x=Pin*ones(size(Fidx)); 
    case 2, %ideal lpf 
        x=(-sign(sign(Fidx-Fc)+0.5)+1)*0.5*Pin; 
    otherwise 
        if Type>=3, 
            x=Pin./(abs(1+(j*Fidx/Fc)).^(2*(Type-2))); 
        end 
end 

 

F.2 ∆Σ Decoding Performance Simulation Scripts 

F.2.1 Ideal Performance Simulation: DsmDecIdealTest.m 

OSR=2.^(2:11); 
AlgoNo=4; 
Mse=zeros(AlgoNo,length(OSR)); 
Time=zeros(AlgoNo,length(OSR)); 
for m=1:length(OSR), 
    N=OSR(m); 
    X=[0:(1/(N*10)):1]; 
    Err=zeros(AlgoNo,length(X)); 
    tIdx=0:(N-1); 
    Hopt=6*(tIdx+1).*(N-tIdx)/(N*(N+1)*(N+2)); 
    WB = waitbar(0,['Processing OSR ' num2str(OSR(m))]); 
    for n=1:AlgoNo, 
  waitbar(n/AlgoNo,WB); 
  tic; 
     for x=1:length(X), 
         [Y,Q]=DSM1(X(x)*ones(N+1,1),0.5); 
         switch n 
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  case 1, %Linear Filter 
                 Output=sum(Y.*Hopt'); 
                 Err(1,x)=Output-X(x); 
             case 2, %Zoomer 
                 Output=SingleZoomer(X(x),N,0,0.5,1,1,0.5); 
                 Err(2,x)=Output-X(x); 
             case 3, %NlogN 
                  [A,B,Tp,Iter]=NlogNDecoder(Y(1:N),1); 
     Output=A/B; 
                 Err(3,x)=(A/B)-X(x); 
                 RcCount(x)=Iter; 
             case 4, %Daeik's algorithm 
     Output=DaeikDSMDec(Y(1:N)); 
                 Err(4,x)=Output-X(x);                     
             otherwise 
   end %switch 
  end %for x 
        Time(n,m)=toc/length(X); 
    end %for n 
    close(WB); 
    Mse(:,m)=mean(Err.^2,2); 
end %for m 

 

F.2.2 Ideal First-order ∆Σ ADC Model: DSM1.m 

function [Y,Q]=DSM1(X,Ref) 
%Delta Sigma Modulator 1st order Model Function 
%X: Input Sequence 
%Ref: Switching reference 
%Y: Modulated Sequence 
%Q: Quantization Noise Sequence 
W=0; 
X=X(:); 
L=length(X); 
Y=zeros(L,1); 
Q=zeros(L,1); 
for i=1:L, 
    if W>Ref, 
        Y(i)=1; 
    end 
    Q(i)=W-Y(i); 
    W=W+X(i)-Y(i); 
end 
Y=Y(2:length(Y)); 
Q=Q(2:length(Q)); 
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F.2.3 Ideal Single Zoomer Decoding: SingleZoomer.m 

function Y=SingleZoomer(Xn,N,Q0,DC,Q1,K,Init) 
% Xn : Input value, a number for dc, or a sequence 
% N : Number of iteration; 
% Q0 : Off value of Delta-sigma 
% DC : On/Off decision point, half between Q0 and Q1 
% Q1 : On value of Delta-sigma; 
% K : range scaler 0-1 
% Init : Initial integrator condition Q0-Q1 
if length(Xn)==1, 
    Xn=Xn*ones(N,1); 
end 
L=Q1-K*(Q1-Q0); 
U=Q0+K*(Q1-Q0); 
Un=zeros(N,1); 
Qn=zeros(N,1); 
Un(1)=Init; 
if Un(1)>DC, 
    Qn(1)=Q1; 
else 
    Qn(1)=Q0; 
end 
S=Qn(1); 
 
Un(2)=Un(1)+Xn(1)-Qn(1); 
Qn(2)=Quantize2(Un(2),Q0,DC,Q1); 
if Un(2)>DC, 
    Qn(2)=Q1; 
else 
    Qn(2)=Q0; 
end 
for n=2:N-1, 
    S=S+Qn(n); 
    Xb=S/n; 
    Un(n+1)=Un(n)+Xn(n)-Qn(n); 
    if Un(n+1)>DC, 
        Qn(n+1)=Q1; 
        L=max([L Xb]); 
    else 
        Qn(n+1)=Q0; 
        U=min([U Xb]); 
    end 
end 
Y=(L+U)/2; 

 

F.2.4 Ideal Recursive Decoding: NlogNDecoder.m 

function [A,B,Tp,Iter]=NlogNDecoder(Y,Iter); 
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% 
[L,J,Tp]=NlogNTypeCheck(Y); 
[A, B]=NlogNDecRecFinal(L,J,Y,Tp); 
if Tp==1, 
    A=B-A; 
end 
if B~=0 & A~=0, 
    return 
end 
Lmax=max(L); 
W=L-Lmax+1; 
[rA,rB,rTp,Iter]=NlogNDecoder(W,Iter+1); 
B=Lmax*rB+rA; 
if Tp==0, 
    A=rB; 
else 
    A=B-rB; 
end 
return 

 

F.2.5 Ideal Correlative Decoding: QNCorrDec.m 

function X=QNCorrDec(Q) 
%Q should have even numbers of output 
N=length(Q); 
K=N/2; 
R=zeros(K,1); 
for k=1:K, 
    R(k)=sum(Q(k+1:N).*Q(1:(N-k)))/(N-k); 
end 
[tL, Lest]=max(R); 
X=sum(Q(1:Lest))/Lest; 

 

F.2.6 Ideal Proposed Decoding: DaeikDSMDec.m 

function Est=DaeikDSMDec(Y) 
% 
L=length(Y); 
BL=0; 
BU=1; 
tS=0; 
for k=1:L, 
    tS=tS+Y(k); 
    tXL=(tS-0.5)/k; 
    tXU=(tS+0.5)/k; 
    BL=max([tXL BL]); 
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    BU=min([tXU BU]); 
end 
Est=(BL+BU)/2; 

 

F.3 Clock Jitter Generation and Simulation Analysis Scripts 

F.3.1 Clock Generation Main Script: GenClockFiles.m 

vA=10.^(-4:0.2:-1); 
for M=1:length(vA), 
    for K=1:20, 
    ClockJitterGenerator(vA(M),K,M); 
    end 
end 
 

 

F.3.2 Clock Jitter Generation Script: ClockJitterGenerator.m 

function ClockJitterGenerator(A,K,M) 
SampleNo=280; 
Von=5; 
RFTm=0.001; 
UnitTime=0.5; 
ClkDuty=0.25; 
TimeUnit='u'; 
VoltUnit='v'; 
 
fCS=['ClkSet' num2str(M) 'A' num2str(K) '.spice']; 
fCR=['ClkRst' num2str(M) 'A' num2str(K) '.spice']; 
 
FidCS=fopen(fCS,'w'); 
FidCR=fopen(fCR,'w'); 
fprintf(FidCS,'VSet\tVSet\t0\tPWL\n+0%s\t%d%s\n', TimeUnit, 0, VoltUnit); 
fprintf(FidCR,'VRst\tVRst\t0\tPWL\n+0%s\t%d%s\n', TimeUnit, Von, VoltUnit); 
JR=[]; 
JS=[]; 
for k=1:SampleNo+10, 
    Jitter=A*UnitTime*randn(1,1); 
    TmA=(k-1)*UnitTime+UnitTime*ClkDuty-RFTm/2+Jitter; 
    TmB=(k-1)*UnitTime+UnitTime*ClkDuty+RFTm/2+Jitter; 
    Jitter=A*UnitTime*randn(1,1); 
    TmC=k*UnitTime-RFTm/2+Jitter; 
    TmD=k*UnitTime+RFTm/2+Jitter; 
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    fprintf(FidCR,'+%f%s\t%d%s\t', TmA, TimeUnit, Von, VoltUnit); 
    fprintf(FidCR,'+%f%s\t%d%s\t', TmB, TimeUnit, 0, VoltUnit); 
    fprintf(FidCR,'+%f%s\t%d%s\t', TmC, TimeUnit, 0, VoltUnit); 
    fprintf(FidCR,'+%f%s\t%d%s\n', TmD, TimeUnit, Von, VoltUnit); 
    Jitter=A*UnitTime*randn(1,1); 
    TmA=(k-1)*UnitTime+UnitTime*0.5-RFTm/2+Jitter; 
    TmB=(k-1)*UnitTime+UnitTime*0.5+RFTm/2+Jitter; 
    Jitter=A*UnitTime*randn(1,1); 
    TmC=(k-1)*UnitTime+UnitTime*ClkDuty+UnitTime*0.5-RFTm/2+Jitter; 
    TmD=(k-1)*UnitTime+UnitTime*ClkDuty+UnitTime*0.5+RFTm/2+Jitter; 
    fprintf(FidCS,'+%f%s\t%d%s\t', TmA, TimeUnit, 0, VoltUnit); 
    fprintf(FidCS,'+%f%s\t%d%s\t', TmB, TimeUnit, Von, VoltUnit); 
    fprintf(FidCS,'+%f%s\t%d%s\t', TmC, TimeUnit, Von, VoltUnit); 
    fprintf(FidCS,'+%f%s\t%d%s\n', TmD, TimeUnit, 0, VoltUnit); 
end 
 
fclose(FidCS); 
fclose(FidCR); 

 

F.3.3 Generated Clock Jitter Spice Input Example: ClkRst1A1.m 

VRst    VRst    0   PWL 
+0u 5v 
+0.124429u  5v  +0.125429u  0v  +0.499487u  0v  +0.500487u  5v 
+0.624513u  5v  +0.625513u  0v  +0.999486u  0v  +1.000486u  5v 
+1.124428u  5v  +1.125428u  0v  +1.499480u  0v  +1.500480u  5v 
+1.624520u  5v  +1.625520u  0v  +1.999454u  0v  +2.000454u  5v 
+2.124511u  5v  +2.125511u  0v  +2.499479u  0v  +2.500479u  5v 
+2.624452u  5v  +2.625452u  0v  +2.999482u  0v  +3.000482u  5v 
(.....) 
+142.624493u    5v  +142.625493u    0v  +142.999637u    0v  +143.000637u    5v 
+143.124386u    5v  +143.125386u    0v  +143.499467u    0v  +143.500467u    5v 
+143.624417u    5v  +143.625417u    0v  +143.999524u    0v  +144.000524u    5v 
+144.124587u    5v  +144.125587u    0v  +144.499478u    0v  +144.500478u    5v 
+144.624537u    5v  +144.625537u    0v  +144.999599u    0v  +145.000599u    5v 

 

F.3.4 Simulation Output Analysis Script: DataProcess.m 

vA=10.^(-4:0.2:-1); 
DSMStr='DSMSimOut'; %DSMSimOutT3AG953.out 
SSCStr='SSCSimOut'; %SSCSimOutT3AG953.out 
VPre='V'; 
NPre='N'; 
IPre='I'; 
 
IRange=10:10:990; 
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NI=length(IRange); 
VRange=1:16; 
NV=length(VRange); 
NRange=1:20; 
NN=length(NRange); 
DSMSwpA=zeros(length(VRange)*length(NRange), length(IRange)); 
 
for v=1:NV, 
    V=VRange(v); 
    for n=1:NN, 
        N=NRange(n); 
        for k=1:NI, 
            Input=IRange(k); 
            FileSuffix=[VPre num2str(V) NPre num2str(N) IPre num2str(Input)]; 
            %LOAD Data 
            eval(['load Data\' DSMStr FileSuffix '.out;']); 
            eval(['DSMMat=' DSMStr FileSuffix ';']); 
            eval(['clear ' DSMStr FileSuffix ';']); 
            DSMSwpA(NN*(v-1)+n,k)=DSMDecA(DSMMat); 
        end 
    end 
end 
 
DSMSwpM=[]; 
DSMSwpV=[]; 
DSMSwpMSE=[]; 
for v=1:NV, 
    DSMSwpM=[DSMSwpM; mean(DSMSwpA((1+NN*(v-1)):(NN*v),:))]; 
    DSMSwpV=[DSMSwpV; std(DSMSwpA((1+NN*(v-1)):(NN*v),:),0,1)]; 
    %DSMSwpMSE=[DSMSwpMSE; sum(DSMSwpV(v,:))/length(DSMSwpV(v,:))]; 
    tD=[]; 
    for k=1:NN, 
        tD=[tD DSMSwpA(k+NN*(v-1),:)-DSMSwpM(v,:)]; 
    end 
    tD=tD.^2; 
    DSMSwpMSE=[DSMSwpMSE; sqrt(sum(tD)/length(tD)^2)]; 
end 
 
tin=0.5e-6*280; 
fin=1/tin; 
dt=10.^(-8:0.1:-5); 
tdt=dt*fin; 
kj=2^8*pi*sqrt(6)*dt/tin; 
nred=log(1+kj.^2)/2*log(2)*6.02; 
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F.4 Data Acquisition Unit Output Statistical Analysis Script: 

DataAnalyze.m 

Files_=dir('*.txt'); 
Files={Files_.name}; 
Data=[]; 
Time=[]; 
for k=1:length(Files), 
    FileName=Files{k}; 
    eval(['load ' FileName ';']); 
    eval(['tData=X' FileName(1:10) ';']); 
    eval(['clear X' FileName(1:10) ';']); 
    Time=[Time; 
24*60*60*str2num(FileName(3:4))+60*60*str2num(FileName(5:6))+60*str2num(FileNam
e(7:8))+str2num(FileName(9:10))]; 
    Data=[Data; tData(1,:) tData(2,:) tData(3,:)]; 
end 
 
dData=[]; 
mData=[]; 
mpData=[]; 
pData=[]; 
rData=[]; 
rdData=[]; 
rmData=[]; 
 
for k=1:length(Files), 
    dData=[dData; Data(k,:)-Data(1,:)]; 
    pData=[pData; sum(Data(k,:))]; 
    mData=[mData; sum((dData(k,:)/24).^2)]; 
    mpData=[mpData; sum((dData(k,:)/pData(k)).^2)]; 
    rData=[rData; Data(k,:)/pData(k)]; 
    rdData=[rdData; rData(k,:)-rData(1,:)]; 
    rmData=[rmData; sum((rdData(k,:)/24).^2)]; 
end 
dTime=Time-Time(1); 
dmTime=dTime/60; 
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Appendix G    

HSPICE SIMULATION SCRIPTS 

 

G.1 HSPICE Scripts 

G.1.1 DSM.cir 

*Delta Sigma ADC Simulation 
*.option post node 
.option fast accuracy 
.option gshunt=1e-15 cshunt=1e-15 
.include 'DSM.spice' 
.include 'ami150cmosmodel.spice' 
 
*PowerSupply 
VddA    Vdd!    0   PVsupply 
VddB    Vdd     0   PVsupply 
VgndA   GND!    0   0 
VgndB   gnd     0   0 
.param PVsupply=5 
 
*Circuit Biasing 
Vbs     Vbs     0   PVmid 
Vref    Vref    0   PVmid 
Ibs     Ibs     0   -1.05u 
.param PVmid='PVsupply/2' 
 
*Capacitor 
Cint    VInt    0   1000fF 
 
*Clocking 
.include 'CktClkSet.spice' 
.include 'CktClkRst.spice' 
*Vset   VSet    0   PULSE(0 PVsupply 0 PTrsfl PTrsfl PClkDt PClock) 
*Vrst   VRst    0   PULSE(0 PVsupply PClkPhs PTrsfl PTrsfl PClkDt PClock) 
*.param     PTrsfl=1p 
*.param     PClock=0.5u 
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*.param     PClkDtRt=0.25 
*.param     PClkDt='PClock*PClkDtRt' 
*.param     PClkPhs='PClock*0.5' 
 
*Detector Input 
.include 'CktDetInput.spice' 
 
*Circuit Temperature 
*.include 'CktTemp.spice' 
 
*Simulation Command 
.ic     v(VInt)=PVmid 
.tran   PSimStp PSimEndTm 
.param  PSimStp=0.5u 
.param  PSimEndTm=150u 
.print  v(Vout) 
.end 

 

G.1.2 SSC.cir 

*Single-Slope ADC Simulation 
*.option post node 
.option fast accuracy 
.option gshunt=1e-15 cshunt=1e-15 
.include 'SSC.spice' 
.include 'ami150cmosmodel.spice' 
 
*PowerSupply 
VddA    Vdd!    0   PVsupply 
VddB    Vdd     0   PVsupply 
VgndA   GND!    0   0 
VgndB   gnd     0   0 
.param PVsupply=5 
 
*Voltage Biasing 
VDtBs   VDtBs   0   PVmid 
VApRf   VApRf   0   PVmid 
.param PVmid='PVsupply/2' 
 
*Current Biasing 
IItBs   IItBs   0   0.08u 
IApBs1  IApBs1  0   -1.0u 
IApBs2  IApBs2  0   -2.0u 
IApBs3  IApBs3  0   -2.0u 
IApBs4  IApBs4  0   80u 
IApBs5  IApBs5  0   1.15u 
 
*Clocking 
VRst    VRst    0   pulse(0 PVsupply 0 PTrsfl PTrsfl PSmpTime PCycle) 
*VRst   VRst    0   0 
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VnRst   VnRst   0   pulse(PVsupply 0 0 PTrsfl PTrsfl PSmpTime PCycle) 
*VnRst  VnRst   0   5 
.param PTrsfl=1p 
.param PCycle=10000u 
.param PSmpTime=1u 
 
*Capacitor 
CInt    VInt    0   1000fF 
CSmp    VSmp    0   1000fF 
 
*Detector Input 
.include 'CktDetInput.spice' 
 
*Circuit Temperature 
.include 'CktTemp.spice' 
 
*Simulation Command 
.ic v(VInt)=0 
.tran PSimStp PSimEndTm 
*.dc IDet 0 1u 0.01u 
.param PSimStp=0.5u 
.param PSimEndTm=130u 
.print v(Vout) 
.end 

 

G.1.3 CktDetInput.spice 

IDet    IDet    0   500n 

 

G.1.4 CktTemp.spice 

.temp   25 

 

G.2 Circuit Extraction 

G.2.1 ∆Σ ADC Extraction: DSM.spice 

* # FILE NAME: /HOME/AZALEA/FRONTEND/CADENCE/SIMULATION/DSM1V1/HSPICES/ 
* extracted/netlist/DSM1v1.C.raw 
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* Netlist output for hspiceS. 
* Generated on Mar 5 16:29:12 2004 
* File name: ConverterComparison_DSM1v1_extracted.S. 
* Subcircuit for cell: DSM1v1. 
* Generated for: hspiceS. 
* Generated on Mar  5 16:29:12 2004. 
C24 0 22  3.13343999320615E-15 M=1.0 
C26 VSET 0  2.80704008214644E-15 M=1.0 
C28 IBS 0  2.78528001748971E-15 M=1.0 
C30 OUT2 0  5.03744003907641E-15 M=1.0 
C32 VDD! 22  2.41535997711655E-15 M=1.0 
C34 VDD! 21  4.70015998980922E-15 M=1.0 
C36 21 22  2.76239996351848E-15 M=1.0 
C38 0 20  5.82079982561971E-15 M=1.0 
C40 0 19  6.33840006034666E-15 M=1.0 
C42 0 18  4.17120019622665E-15 M=1.0 
C44 0 VRST  23.6479994522023E-15 M=1.0 
C46 0 VINT  12.8159998211792E-15 M=1.0 
C48 VSET 0  23.1424004037886E-15 M=1.0 
C50 IBS 0  23.9192007671883E-15 M=1.0 
C52 OUT2 22  5.09136003891625E-15 M=1.0 
C54 OUT2 0  16.2648808131735E-15 M=1.0 
C56 OUT1 21  5.09136003891625E-15 M=1.0 
C58 OUT1 0  17.8371992740414E-15 M=1.0 
C60 VOUT 0  2.14879997916504E-15 M=1.0 
C62 IDET 0  14.108400151001E-15 M=1.0 
C64 VDD! 7  3.69040015492611E-15 M=1.0 
C66 VDD! 21  4.13136000155254E-15 M=1.0 
C68 VDD! 18  2.57040004074903E-15 M=1.0 
C70 VDD! 0  2.48880006298411E-15 M=1.0 
C72 VDD! VSET  3.08576008508873E-15 M=1.0 
C74 VDD! OUT2  2.28383990084696E-15 M=1.0 
C76 VDD! OUT1  3.82527998738099E-15 M=1.0 
C78 VDD! IDET  16.524799649302E-15 M=1.0 
C80 VBS 0  23.3952007750284E-15 M=1.0 
C82 VREF 0  22.5232006846208E-15 M=1.0 
C84 0 20  2.5619199703976E-15 M=1.0 
C86 0 19  5.28880003078944E-15 M=1.0 
C88 0 VRST  3.3892799421772E-15 M=1.0 
C90 0 VINT  2.90800005671205E-15 M=1.0 
C92 IBS 0  2.01391993495193E-15 M=1.0 
C94 OUT2 0  3.56192007990421E-15 M=1.0 
C96 OUT1 0  5.37248010971459E-15 M=1.0 
C98 IDET 1  2.74816006912571E-15 M=1.0 
C100 VDD! VRST  2.41871994506007E-15 M=1.0 
C102 VDD! VINT  2.70879993037446E-15 M=1.0 
C104 VDD! VSET  2.3961600695429E-15 M=1.0 
C106 VDD! OUT1  4.74255991804993E-15 M=1.0 
C108 VBS 2  3.08608005178455E-15 M=1.0 
M110 VDD! OUT2 OUT1 VDD!  CMOSP  L=1.6E-6 W=3.2E-6 AD=12.7999997753814E-12 
+AS=7.67999986522883E-12 PD=11.1999997898238E-6 PS=4.80000016978011E-6 M=1 
M112 OUT1 21 VDD! VDD!  CMOSP  L=1.6E-6 W=3.2E-6 AD=7.67999986522883E-12 
+AS=12.7999997753814E-12 PD=4.80000016978011E-6 PS=11.1999997898238E-6 M=1 
M114 VDD! OUT1 OUT2 VDD!  CMOSP  L=1.6E-6 W=3.2E-6 AD=12.7999997753814E-12 
+AS=7.67999986522883E-12 PD=11.1999997898238E-6 PS=4.80000016978011E-6 M=1 
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M116 OUT2 22 VDD! VDD!  CMOSP  L=1.6E-6 W=3.2E-6 AD=7.67999986522883E-12 
+AS=12.7999997753814E-12 PD=4.80000016978011E-6 PS=11.1999997898238E-6 M=1 
M118 VDD! 21 22 VDD!  CMOSP  L=1.6E-6 W=3.2E-6 AD=12.7999997753814E-12 
+AS=7.67999986522883E-12 PD=11.1999997898238E-6 PS=4.80000016978011E-6 M=1 
M120 22 VSET VDD! VDD!  CMOSP  L=1.6E-6 W=3.2E-6 AD=7.67999986522883E-12 
+AS=12.7999997753814E-12 PD=4.80000016978011E-6 PS=11.1999997898238E-6 M=1 
M122 VDD! 22 21 VDD!  CMOSP  L=1.6E-6 W=3.2E-6 AD=12.7999997753814E-12 
+AS=7.67999986522883E-12 PD=11.1999997898238E-6 PS=4.80000016978011E-6 M=1 
M124 21 VSET VDD! VDD!  CMOSP  L=1.6E-6 W=3.2E-6 AD=7.67999986522883E-12 
+AS=12.7999997753814E-12 PD=4.80000016978011E-6 PS=11.1999997898238E-6 M=1 
M126 20 VREF 7 VDD!  CMOSP  L=1.6E-6 W=3.2E-6 AD=12.7999997753814E-12 
+AS=12.7999997753814E-12 PD=11.1999997898238E-6 PS=11.1999997898238E-6 M=1 
M128 19 VINT 7 VDD!  CMOSP  L=1.6E-6 W=3.2E-6 AD=12.7999997753814E-12 
+AS=12.7999997753814E-12 PD=11.1999997898238E-6 PS=11.1999997898238E-6 M=1 
M130 7 18 12 VDD!  CMOSP  L=1.6E-6 W=3.2E-6 AD=12.7999997753814E-12 
+AS=2.55999995507628E-12 PD=11.1999997898238E-6 PS=1.60000001869776E-6 M=1 
M132 12 6 VDD! VDD!  CMOSP  L=1.6E-6 W=3.2E-6 AD=2.55999995507628E-12 
+AS=12.7999997753814E-12 PD=1.60000001869776E-6 PS=11.1999997898238E-6 M=1 
M134 18 18 6 VDD!  CMOSP  L=1.6E-6 W=3.2E-6 AD=12.7999997753814E-12 
+AS=7.67999986522883E-12 PD=11.1999997898238E-6 PS=4.80000016978011E-6 M=1 
M136 6 6 VDD! VDD!  CMOSP  L=1.6E-6 W=3.2E-6 AD=7.67999986522883E-12 
+AS=12.7999997753814E-12 PD=4.80000016978011E-6 PS=11.1999997898238E-6 M=1 
M138 VINT 1 11 VDD!  CMOSP  L=1.6E-6 W=3.2E-6 AD=12.7999997753814E-12 
+AS=2.55999995507628E-12 PD=11.1999997898238E-6 PS=1.60000001869776E-6 M=1 
M140 11 5 VDD! VDD!  CMOSP  L=1.6E-6 W=3.2E-6 AD=2.55999995507628E-12 
+AS=12.7999997753814E-12 PD=1.60000001869776E-6 PS=11.1999997898238E-6 M=1 
M142 2 1 10 VDD!  CMOSP  L=1.6E-6 W=3.2E-6 AD=12.7999997753814E-12 
+AS=2.55999995507628E-12 PD=11.1999997898238E-6 PS=1.60000001869776E-6 M=1 
M144 10 5 VDD! VDD!  CMOSP  L=1.6E-6 W=3.2E-6 AD=2.55999995507628E-12 
+AS=12.7999997753814E-12 PD=1.60000001869776E-6 PS=11.1999997898238E-6 M=1 
M146 1 1 5 VDD!  CMOSP  L=1.6E-6 W=3.2E-6 AD=12.7999997753814E-12 
+AS=7.67999986522883E-12 PD=11.1999997898238E-6 PS=4.80000016978011E-6 M=1 
M148 5 5 VDD! VDD!  CMOSP  L=1.6E-6 W=3.2E-6 AD=7.67999986522883E-12 
+AS=12.7999997753814E-12 PD=4.80000016978011E-6 PS=11.1999997898238E-6 M=1 
M150 VDD! OUT2 VOUT VDD!  CMOSP  L=1.6E-6 W=19.2E-6 AD=76.7999969175648E-12 
+AS=46.0800009260964E-12 PD=27.1999997494277E-6 PS=4.80000016978011E-6 M=1 
M152 VOUT OUT2 VDD! VDD!  CMOSP  L=1.6E-6 W=19.2E-6 AD=46.0800009260964E-12 
+AS=76.7999969175648E-12 PD=4.80000016978011E-6 PS=27.1999997494277E-6 M=1 
M154 20 VRST 19 0  CMOSN  L=1.6E-6 W=3.2E-6 AD=12.7999997753814E-12 
+AS=12.7999997753814E-12 PD=11.1999997898238E-6 PS=11.1999997898238E-6 M=1 
M156 0 21 9 0  CMOSN  L=1.6E-6 W=3.2E-6 AD=12.7999997753814E-12 
+AS=2.55999995507628E-12 PD=11.1999997898238E-6 PS=1.60000001869776E-6 M=1 
M158 9 OUT2 OUT1 0  CMOSN  L=1.6E-6 W=3.2E-6 AD=2.55999995507628E-12 
+AS=12.7999997753814E-12 PD=1.60000001869776E-6 PS=11.1999997898238E-6 M=1 
M160 0 22 8 0  CMOSN  L=1.6E-6 W=3.2E-6 AD=12.7999997753814E-12 
+AS=2.55999995507628E-12 PD=11.1999997898238E-6 PS=1.60000001869776E-6 M=1 
M162 8 OUT1 OUT2 0  CMOSN  L=1.6E-6 W=3.2E-6 AD=2.55999995507628E-12 
+AS=12.7999997753814E-12 PD=1.60000001869776E-6 PS=11.1999997898238E-6 M=1 
M164 0 18 18 0  CMOSN  L=1.6E-6 W=3.2E-6 AD=12.7999997753814E-12 
+AS=12.7999997753814E-12 PD=11.1999997898238E-6 PS=11.1999997898238E-6 M=1 
M166 0 4 4 0  CMOSN  L=1.6E-6 W=3.2E-6 AD=12.7999997753814E-12 
+AS=7.67999986522883E-12 PD=11.1999997898238E-6 PS=4.80000016978011E-6 M=1 
M168 4 IBS IBS 0  CMOSN  L=1.6E-6 W=3.2E-6 AD=7.67999986522883E-12 
+AS=12.7999997753814E-12 PD=4.80000016978011E-6 PS=11.1999997898238E-6 M=1 
M170 0 OUT2 17 0  CMOSN  L=1.6E-6 W=3.2E-6 AD=12.7999997753814E-12 
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+AS=7.67999986522883E-12 PD=11.1999997898238E-6 PS=4.80000016978011E-6 M=1 
M172 17 OUT1 4 0  CMOSN  L=1.6E-6 W=3.2E-6 AD=7.67999986522883E-12 
+AS=12.7999997753814E-12 PD=4.80000016978011E-6 PS=11.1999997898238E-6 M=1 
M174 0 17 3 0  CMOSN  L=1.6E-6 W=3.2E-6 AD=12.7999997753814E-12 
+AS=7.67999986522883E-12 PD=11.1999997898238E-6 PS=4.80000016978011E-6 M=1 
M176 3 IBS VINT 0  CMOSN  L=1.6E-6 W=3.2E-6 AD=7.67999986522883E-12 
+AS=12.7999997753814E-12 PD=4.80000016978011E-6 PS=11.1999997898238E-6 M=1 
M178 VBS 2 2 0  CMOSN  L=1.6E-6 W=3.2E-6 AD=12.7999997753814E-12 
+AS=12.7999997753814E-12 PD=11.1999997898238E-6 PS=11.1999997898238E-6 M=1 
M180 0 19 20 0  CMOSN  L=1.6E-6 W=3.2E-6 AD=12.7999997753814E-12 
+AS=7.67999986522883E-12 PD=11.1999997898238E-6 PS=4.80000016978011E-6 M=1 
M182 IDET 2 1 0  CMOSN  L=1.6E-6 W=3.2E-6 AD=12.7999997753814E-12 
+AS=12.7999997753814E-12 PD=11.1999997898238E-6 PS=11.1999997898238E-6 M=1 
M184 20 VSET 22 0  CMOSN  L=1.6E-6 W=3.2E-6 AD=7.67999986522883E-12 
+AS=12.7999997753814E-12 PD=4.80000016978011E-6 PS=11.1999997898238E-6 M=1 
M186 0 20 19 0  CMOSN  L=1.6E-6 W=3.2E-6 AD=12.7999997753814E-12 
+AS=7.67999986522883E-12 PD=11.1999997898238E-6 PS=4.80000016978011E-6 M=1 
M188 19 VSET 21 0  CMOSN  L=1.6E-6 W=3.2E-6 AD=7.67999986522883E-12 
+AS=12.7999997753814E-12 PD=4.80000016978011E-6 PS=11.1999997898238E-6 M=1 
M190 0 OUT2 VOUT 0  CMOSN  L=1.6E-6 W=8E-6 AD=31.9999998721343E-12 
+AS=19.1999992293912E-12 PD=15.9999999596039E-6 PS=4.80000016978011E-6 M=1 
M192 VOUT OUT2 0 0  CMOSN  L=1.6E-6 W=8E-6 AD=19.1999992293912E-12 
+AS=31.9999998721343E-12 PD=4.80000016978011E-6 PS=15.9999999596039E-6 M=1 

 

G.2.2 Single-slope ADC Extraction: SSC.spice 

* # FILE NAME: /HOME/AZALEA/FRONTEND/CADENCE/SIMULATION/SSADC2V3/HSPICES/ 
* extracted/netlist/SSADC2v3.C.raw 
* Netlist output for hspiceS. 
* Generated on Mar 4 17:25:46 2004 
* File name: ConverterComparison_SSADC2v3_extracted.S. 
* Subcircuit for cell: SSADC2v3. 
* Generated for: hspiceS. 
* Generated on Mar  4 17:25:46 2004. 
C25 S3 0  3.11167992854942E-15 M=1.0 
C27 0 9  2.16720007587825E-15 M=1.0 
C29 0 4  2.26240001464429E-15 M=1.0 
C31 0 VRST  35.0872014277283E-15 M=1.0 
C33 0 VINT  7.01600016012873E-15 M=1.0 
C35 VDTBS 0  33.0647984578096E-15 M=1.0 
C37 S2B 0  2.55279996665451E-15 M=1.0 
C39 S2A 0  2.28560003531135E-15 M=1.0 
C41 IAPBS5 0  32.520800017765E-15 M=1.0 
C43 IAPBS4 0  32.520800017765E-15 M=1.0 
C45 VOUT 0  33.5831995621882E-15 M=1.0 
C47 IAPBS3 0  33.2735988555714E-15 M=1.0 
C49 IAPBS2 0  33.2735988555714E-15 M=1.0 
C51 IAPBS1 0  33.2735988555714E-15 M=1.0 
C53 IDET 0  18.8520006490266E-15 M=1.0 
C55 S1B 0  2.27240008561958E-15 M=1.0 
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C57 VSMP 0  8.16079991669376E-15 M=1.0 
C59 VDD! 4  3.15279999000683E-15 M=1.0 
C61 VDD! IDET  25.2567996221085E-15 M=1.0 
C63 IITBS 0  32.520800017765E-15 M=1.0 
C65 NOUT 0  4.0124001533413E-15 M=1.0 
C67 VAPRF 0  33.0647984578096E-15 M=1.0 
C69 VNRST 0  33.0647984578096E-15 M=1.0 
C71 S5 0  4.62719995986452E-15 M=1.0 
C73 S5 VDD!  2.48399992727202E-15 M=1.0 
C75 S4 0  3.20959990186733E-15 M=1.0 
C77 S3 0  3.27999998648719E-15 M=1.0 
C79 S3 VDD!  2.21760001854754E-15 M=1.0 
C81 0 4  4.78055993364613E-15 M=1.0 
C83 0 VRST  10.0695996747596E-15 M=1.0 
C85 0 VINT  5.64007984060885E-15 M=1.0 
C87 VDTBS 2  2.47071993296673E-15 M=1.0 
C89 IAPBS5 0  2.25952010262363E-15 M=1.0 
C91 IAPBS4 0  2.01391993495193E-15 M=1.0 
C93 VOUT 0  2.55423992266484E-15 M=1.0 
C95 IAPBS3 0  2.37815998413904E-15 M=1.0 
C97 IAPBS2 0  2.04199992418636E-15 M=1.0 
C99 IDET 1  2.24128009513745E-15 M=1.0 
C101 VSMP 0  3.9943998561792E-15 M=1.0 
C103 VDD! VRST  7.8609604177611E-15 M=1.0 
C105 VDD! IAPBS1  2.03456001029415E-15 M=1.0 
C107 NOUT VDD!  2.4076799293838E-15 M=1.0 
C109 VAPRF VDD!  2.11119997487819E-15 M=1.0 
C111 VNRST 0  5.39855983064407E-15 M=1.0 
C113 VNRST VDD!  2.53839998303471E-15 M=1.0 
C115 S3 0  8.20384020184259E-15 M=1.0 
M117 VSMP VRST S5 VDD!  CMOSP  L=1.6E-6 W=9.6E-6 AD=38.3999984587824E-12 
+AS=38.3999984587824E-12 PD=17.5999994098675E-6 PS=17.5999994098675E-6 M=1 
M119 NOUT 13 VDD! VDD!  CMOSP  L=1.6E-6 W=12.8E-6 AD=51.1999991015255E-12 
+AS=51.1999991015255E-12 PD=20.800000129384E-6 PS=20.800000129384E-6 M=1 
M121 VOUT NOUT VDD! VDD!  CMOSP  L=1.6E-6 W=19.2E-6 AD=46.0800009260964E-12 
+AS=76.7999969175648E-12 PD=4.80000016978011E-6 PS=27.1999997494277E-6 M=1 
M123 VDD! NOUT VOUT VDD!  CMOSP  L=1.6E-6 W=19.2E-6 AD=76.7999969175648E-12 
+AS=46.0800009260964E-12 PD=27.1999997494277E-6 PS=4.80000016978011E-6 M=1 
M125 14 14 VDD! VDD!  CMOSP  L=1.6E-6 W=3.2E-6 AD=7.67999986522883E-12 
+AS=12.7999997753814E-12 PD=4.80000016978011E-6 PS=11.1999997898238E-6 M=1 
M127 1 1 14 VDD!  CMOSP  L=1.6E-6 W=3.2E-6 AD=12.7999997753814E-12 
+AS=7.67999986522883E-12 PD=11.1999997898238E-6 PS=4.80000016978011E-6 M=1 
M129 21 14 VDD! VDD!  CMOSP  L=1.6E-6 W=3.2E-6 AD=2.55999995507628E-12 
+AS=12.7999997753814E-12 PD=1.60000001869776E-6 PS=11.1999997898238E-6 M=1 
M131 2 1 21 VDD!  CMOSP  L=1.6E-6 W=3.2E-6 AD=12.7999997753814E-12 
+AS=2.55999995507628E-12 PD=11.1999997898238E-6 PS=1.60000001869776E-6 M=1 
M133 22 14 VDD! VDD!  CMOSP  L=1.6E-6 W=3.2E-6 AD=2.55999995507628E-12 
+AS=12.7999997753814E-12 PD=1.60000001869776E-6 PS=11.1999997898238E-6 M=1 
M135 4 1 22 VDD!  CMOSP  L=1.6E-6 W=3.2E-6 AD=12.7999997753814E-12 
+AS=2.55999995507628E-12 PD=11.1999997898238E-6 PS=1.60000001869776E-6 M=1 
M137 4 4 VDD! VDD!  CMOSP  L=1.6E-6 W=3.2E-6 AD=12.7999997753814E-12 
+AS=12.7999997753814E-12 PD=11.1999997898238E-6 PS=11.1999997898238E-6 M=1 
M139 S1B 4 VDD! VDD!  CMOSP  L=1.6E-6 W=3.2E-6 AD=12.7999997753814E-12 
+AS=12.7999997753814E-12 PD=11.1999997898238E-6 PS=11.1999997898238E-6 M=1 
M141 S2A S2A VDD! VDD!  CMOSP  L=1.6E-6 W=3.2E-6 AD=12.7999997753814E-12 
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+AS=12.7999997753814E-12 PD=11.1999997898238E-6 PS=11.1999997898238E-6 M=1 
M143 S2B S2A VDD! VDD!  CMOSP  L=1.6E-6 W=3.2E-6 AD=12.7999997753814E-12 
+AS=12.7999997753814E-12 PD=11.1999997898238E-6 PS=11.1999997898238E-6 M=1 
M145 S3 S2B VDD! VDD!  CMOSP  L=1.6E-6 W=3.2E-6 AD=12.7999997753814E-12 
+AS=12.7999997753814E-12 PD=11.1999997898238E-6 PS=11.1999997898238E-6 M=1 
M147 IAPBS4 IAPBS4 VDD! VDD!  CMOSP  L=1.6E-6 W=3.2E-6 
+AD=12.7999997753814E-12 AS=12.7999997753814E-12 PD=11.1999997898238E-6 
+PS=11.1999997898238E-6 M=1 
M149 S4 IAPBS4 VDD! VDD!  CMOSP  L=1.6E-6 W=3.2E-6 AD=12.7999997753814E-12 
+AS=12.7999997753814E-12 PD=11.1999997898238E-6 PS=11.1999997898238E-6 M=1 
M151 IAPBS5 IAPBS5 VDD! VDD!  CMOSP  L=1.6E-6 W=3.2E-6 
+AD=12.7999997753814E-12 AS=12.7999997753814E-12 PD=11.1999997898238E-6 
+PS=11.1999997898238E-6 M=1 
M153 S5 IAPBS5 VDD! VDD!  CMOSP  L=1.6E-6 W=3.2E-6 AD=12.7999997753814E-12 
+AS=12.7999997753814E-12 PD=11.1999997898238E-6 PS=11.1999997898238E-6 M=1 
M155 9 9 VDD! VDD!  CMOSP  L=1.6E-6 W=3.2E-6 AD=12.7999997753814E-12 
+AS=12.7999997753814E-12 PD=11.1999997898238E-6 PS=11.1999997898238E-6 M=1 
M157 12 12 VDD! VDD!  CMOSP  L=1.6E-6 W=3.2E-6 AD=12.7999997753814E-12 
+AS=12.7999997753814E-12 PD=11.1999997898238E-6 PS=11.1999997898238E-6 M=1 
M159 13 12 VDD! VDD!  CMOSP  L=1.6E-6 W=3.2E-6 AD=12.7999997753814E-12 
+AS=12.7999997753814E-12 PD=11.1999997898238E-6 PS=11.1999997898238E-6 M=1 
M161 23 15 VDD! VDD!  CMOSP  L=1.6E-6 W=3.2E-6 AD=2.55999995507628E-12 
+AS=12.7999997753814E-12 PD=1.60000001869776E-6 PS=11.1999997898238E-6 M=1 
M163 VINT IITBS 23 VDD!  CMOSP  L=1.6E-6 W=3.2E-6 AD=12.7999997753814E-12 
+AS=2.55999995507628E-12 PD=11.1999997898238E-6 PS=1.60000001869776E-6 M=1 
M165 15 15 VDD! VDD!  CMOSP  L=1.6E-6 W=3.2E-6 AD=7.67999986522883E-12 
+AS=12.7999997753814E-12 PD=4.80000016978011E-6 PS=11.1999997898238E-6 M=1 
M167 IITBS IITBS 15 VDD!  CMOSP  L=1.6E-6 W=3.2E-6 AD=12.7999997753814E-12 
+AS=7.67999986522883E-12 PD=11.1999997898238E-6 PS=4.80000016978011E-6 M=1 
M169 S5 VNRST VSMP 0  CMOSN  L=1.6E-6 W=4E-6 AD=15.9999999360672E-12 
+AS=15.9999999360672E-12 PD=12.0000004244503E-6 PS=12.0000004244503E-6 M=1 
M171 20 10 0 0  CMOSN  L=1.6E-6 W=3.2E-6 AD=2.55999995507628E-12 
+AS=12.7999997753814E-12 PD=1.60000001869776E-6 PS=11.1999997898238E-6 M=1 
M173 NOUT 9 20 0  CMOSN  L=1.6E-6 W=3.2E-6 AD=7.67999986522883E-12 
+AS=2.55999995507628E-12 PD=4.80000016978011E-6 PS=1.60000001869776E-6 M=1 
M175 VDD! VRST NOUT 0  CMOSN  L=1.6E-6 W=3.2E-6 AD=12.7999997753814E-12 
+AS=7.67999986522883E-12 PD=11.1999997898238E-6 PS=4.80000016978011E-6 M=1 
M177 VOUT NOUT 0 0  CMOSN  L=1.6E-6 W=8E-6 AD=19.1999992293912E-12 
+AS=31.9999998721343E-12 PD=4.80000016978011E-6 PS=15.9999999596039E-6 M=1 
M179 0 NOUT VOUT 0  CMOSN  L=1.6E-6 W=8E-6 AD=31.9999998721343E-12 
+AS=19.1999992293912E-12 PD=15.9999999596039E-6 PS=4.80000016978011E-6 M=1 
M181 IDET 2 1 0  CMOSN  L=1.6E-6 W=3.2E-6 AD=12.7999997753814E-12 
+AS=12.7999997753814E-12 PD=11.1999997898238E-6 PS=11.1999997898238E-6 M=1 
M183 VDTBS 2 2 0  CMOSN  L=1.6E-6 W=3.2E-6 AD=12.7999997753814E-12 
+AS=12.7999997753814E-12 PD=11.1999997898238E-6 PS=11.1999997898238E-6 M=1 
M185 3 IAPBS1 IAPBS1 0  CMOSN  L=1.6E-6 W=3.2E-6 AD=7.67999986522883E-12 
+AS=12.7999997753814E-12 PD=4.80000016978011E-6 PS=11.1999997898238E-6 M=1 
M187 0 3 3 0  CMOSN  L=1.6E-6 W=3.2E-6 AD=12.7999997753814E-12 
+AS=7.67999986522883E-12 PD=11.1999997898238E-6 PS=4.80000016978011E-6 M=1 
M189 5 S3 4 0  CMOSN  L=1.6E-6 W=3.2E-6 AD=7.67999986522883E-12 
+AS=12.7999997753814E-12 PD=4.80000016978011E-6 PS=11.1999997898238E-6 M=1 
M191 16 IAPBS1 5 0  CMOSN  L=1.6E-6 W=3.2E-6 AD=2.55999995507628E-12 
+AS=7.67999986522883E-12 PD=1.60000001869776E-6 PS=4.80000016978011E-6 M=1 
M193 0 3 16 0  CMOSN  L=1.6E-6 W=3.2E-6 AD=12.7999997753814E-12 
+AS=2.55999995507628E-12 PD=11.1999997898238E-6 PS=1.60000001869776E-6 M=1 
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M195 5 VAPRF S1B 0  CMOSN  L=1.6E-6 W=3.2E-6 AD=12.7999997753814E-12 
+AS=12.7999997753814E-12 PD=11.1999997898238E-6 PS=11.1999997898238E-6 M=1 
M197 6 IAPBS2 IAPBS2 0  CMOSN  L=1.6E-6 W=3.2E-6 AD=7.67999986522883E-12 
+AS=12.7999997753814E-12 PD=4.80000016978011E-6 PS=11.1999997898238E-6 M=1 
M199 0 6 6 0  CMOSN  L=1.6E-6 W=3.2E-6 AD=12.7999997753814E-12 
+AS=7.67999986522883E-12 PD=11.1999997898238E-6 PS=4.80000016978011E-6 M=1 
M201 7 S1B S2A 0  CMOSN  L=1.6E-6 W=3.2E-6 AD=7.67999986522883E-12 
+AS=12.7999997753814E-12 PD=4.80000016978011E-6 PS=11.1999997898238E-6 M=1 
M203 17 IAPBS2 7 0  CMOSN  L=1.6E-6 W=3.2E-6 AD=2.55999995507628E-12 
+AS=7.67999986522883E-12 PD=1.60000001869776E-6 PS=4.80000016978011E-6 M=1 
M205 0 6 17 0  CMOSN  L=1.6E-6 W=3.2E-6 AD=12.7999997753814E-12 
+AS=2.55999995507628E-12 PD=11.1999997898238E-6 PS=1.60000001869776E-6 M=1 
M207 7 4 S2B 0  CMOSN  L=1.6E-6 W=3.2E-6 AD=12.7999997753814E-12 
+AS=12.7999997753814E-12 PD=11.1999997898238E-6 PS=11.1999997898238E-6 M=1 
M209 18 IAPBS3 S3 0  CMOSN  L=1.6E-6 W=3.2E-6 AD=2.55999995507628E-12 
+AS=12.7999997753814E-12 PD=1.60000001869776E-6 PS=11.1999997898238E-6 M=1 
M211 0 8 18 0  CMOSN  L=1.6E-6 W=3.2E-6 AD=12.7999997753814E-12 
+AS=2.55999995507628E-12 PD=11.1999997898238E-6 PS=1.60000001869776E-6 M=1 
M213 8 IAPBS3 IAPBS3 0  CMOSN  L=1.6E-6 W=3.2E-6 AD=7.67999986522883E-12 
+AS=12.7999997753814E-12 PD=4.80000016978011E-6 PS=11.1999997898238E-6 M=1 
M215 0 8 8 0  CMOSN  L=1.6E-6 W=3.2E-6 AD=12.7999997753814E-12 
+AS=7.67999986522883E-12 PD=11.1999997898238E-6 PS=4.80000016978011E-6 M=1 
M217 0 S3 S4 0  CMOSN  L=1.6E-6 W=3.2E-6 AD=12.7999997753814E-12 
+AS=12.7999997753814E-12 PD=11.1999997898238E-6 PS=11.1999997898238E-6 M=1 
M219 0 S4 S5 0  CMOSN  L=1.6E-6 W=3.2E-6 AD=12.7999997753814E-12 
+AS=12.7999997753814E-12 PD=11.1999997898238E-6 PS=11.1999997898238E-6 M=1 
M221 10 9 9 0  CMOSN  L=1.6E-6 W=3.2E-6 AD=7.67999986522883E-12 
+AS=12.7999997753814E-12 PD=4.80000016978011E-6 PS=11.1999997898238E-6 M=1 
M223 0 10 10 0  CMOSN  L=1.6E-6 W=3.2E-6 AD=12.7999997753814E-12 
+AS=7.67999986522883E-12 PD=11.1999997898238E-6 PS=4.80000016978011E-6 M=1 
M225 19 9 11 0  CMOSN  L=1.6E-6 W=3.2E-6 AD=2.55999995507628E-12 
+AS=12.7999997753814E-12 PD=1.60000001869776E-6 PS=11.1999997898238E-6 M=1 
M227 0 10 19 0  CMOSN  L=1.6E-6 W=3.2E-6 AD=12.7999997753814E-12 
+AS=2.55999995507628E-12 PD=11.1999997898238E-6 PS=1.60000001869776E-6 M=1 
M229 11 VSMP 12 0  CMOSN  L=1.6E-6 W=3.2E-6 AD=12.7999997753814E-12 
+AS=12.7999997753814E-12 PD=11.1999997898238E-6 PS=11.1999997898238E-6 M=1 
M231 11 VINT 13 0  CMOSN  L=1.6E-6 W=3.2E-6 AD=12.7999997753814E-12 
+AS=12.7999997753814E-12 PD=11.1999997898238E-6 PS=11.1999997898238E-6 M=1 
M233 0 VRST VINT 0  CMOSN  L=1.6E-6 W=3.2E-6 AD=12.7999997753814E-12 
+AS=12.7999997753814E-12 PD=11.1999997898238E-6 PS=11.1999997898238E-6 M=1 
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Appendix H    

PERL SCRIPTS 

 

H.1 Spice Simulation Control Scripts 

H.1.1 DC Sweep with Model Variation: AcqScriptModel.pl 

#!/usr/bin/perl 
$SimInp="CktDetInput.spice"; 
$DSMSimOut="DSM.lis"; 
$SSCSimOut="SSC.lis"; 
$DSMSimSrc="DSM.cir"; 
$SSCSimSrc="SSC.cir"; 
$ModelList="ModelList"; 
$ModelDir="CmosModel"; 
$DSMOutNameRoot="DSMSimOut"; 
$SSCOutNameRoot="SSCSimOut"; 
$DSMPatFile="DSM.header"; 
$SSCPatFile="SSC.header"; 
$IterNo=98; 
$IterStep=10; 
$IterOffset=10; 
$Unit='n'; 
$x=0; 
$Input=0; 
$ModelCount=0; 
 
open(MODEL, $ModelList)  || die("Cannot CMOS model list file:$ModelList"); 
while ($ModelName=<MODEL>) 
{ 
    chop $ModelName; 
    system("cp $ModelDir/$ModelName ami150cmosmodel.spice"); 
    for ($x=0; $x<=$IterNo; $x++) 
    { 
        $Input=$x*$IterStep+$IterOffset; 
        WriteSimInput(); 
        system("hspice $DSMSimSrc > $DSMSimOut"); 
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        system("hspice $SSCSimSrc > $SSCSimOut"); 
        $ModelName=~s/\.spice//; 
        $ModelName=~tr/a-z/A-Z/; 
        $ModelIdx="M$ModelCount"; 
        $InputIdx="I$Input"; 
        $DSMCvrtStr="$DSMOutNameRoot$ModelIdx$InputIdx.out"; 
        $SSCCvrtStr="$SSCOutNameRoot$ModelIdx$InputIdx.out"; 
        system("CvrtSimOut.pl -d 2.5 -s 1 -p 0 -m $DSMPatFile < $DSMSimOut > 
$DSMCvrtStr"); 
        system("CvrtSimOut.pl -d 2.5 -s 1 -p 0 -m $SSCPatFile < $SSCSimOut > 
$SSCCvrtStr"); 
    } 
    $ModelCount++; 
} 
close(MODEL); 
 
sub WriteSimInput { 
    open(FOUT, ">$SimInp") || die("Cannot write sim input file:$SimInp"); 
    print FOUT "IDet\tIDet\t0\t$Input$Unit\n"; 
    close(FOUT); 
} 

 

H.1.2 DC Sweep with Temperature Variation: AcqScriptTemp.pl 

#!/usr/bin/perl 
$SimInp="CktDetInput.spice"; 
$SimTemp="CktTemp.spice"; 
$DSMSimOut="DSM.lis"; 
$SSCSimOut="SSC.lis"; 
$DSMSimSrc="DSM.cir"; 
$SSCSimSrc="SSC.cir"; 
$ModelList="ModelList"; 
$ModelDir="CmosModel"; 
$DSMOutNameRoot="DSMSimOut"; 
$SSCOutNameRoot="SSCSimOut"; 
$DSMPatFile="DSM.header"; 
$SSCPatFile="SSC.header"; 
$IterNo=98; 
$IterStep=10; 
$IterOffset=10; 
$Unit='n'; 
$x=0; 
$Input=0; 
#$ModelCount=0; 
$CktTempOffset=0; 
$CktTempNo=10; 
$CktTempStep=10; 
 
for ($y=0; $y<=$CktTempNo; $y++) 
{ 
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    $CktTemp=$CktTempOffset+$y*$CktTempStep; 
    for ($x=0; $x<=$IterNo; $x++) 
    { 
        $Input=$x*$IterStep+$IterOffset; 
        WriteSimInput(); 
        system("hspice $DSMSimSrc > $DSMSimOut"); 
        system("hspice $SSCSimSrc > $SSCSimOut"); 
        $ModelName=~s/\.spice//; 
        $ModelName=~tr/a-z/A-Z/; 
        $ModelIdx="T$CktTemp"; 
        $InputIdx="I$Input"; 
        $DSMCvrtStr="$DSMOutNameRoot$ModelIdx$InputIdx.out"; 
        $SSCCvrtStr="$SSCOutNameRoot$ModelIdx$InputIdx.out"; 
        system("CvrtSimOut.pl -d 2.5 -s 1 -p 0 -m $DSMPatFile < $DSMSimOut > 
$DSMCvrtStr"); 
        system("CvrtSimOut.pl -d 2.5 -s 1 -p 0 -m $SSCPatFile < $SSCSimOut > 
$SSCCvrtStr"); 
    } 
} 
 
sub WriteSimInput { 
    open(FOUT, ">$SimInp") || die("Cannot write sim input file:$SimInp"); 
    print FOUT "IDet\tIDet\t0\t$Input$Unit\n"; 
    close(FOUT); 
    open(FOUT, ">$SimTemp") || die("Cannot write sim input file:$SimInp"); 
    print FOUT ".temp\t$CktTemp\n"; 
    close(FOUT); 
} 

 

H.2 Spice Data Manipulation Scripts 

H.2.1 SPICE Analog Data Extractor: ExtSimOut.pl 

#!/usr/bin/perl 
$Mode=0; 
$Step=1; 
$Phase=0; 
ArgvProcess(); 
$Count=$Step-$Phase; 
while ($Line=<STDIN>) { 
    if($Mode == -1) { 
        if($Line !~ /^\s*\d/)  
            $Mode=0; 
            close(FFILTER); 
            $SimCount++; 
        } 
        else { 
            if($Count >= $Step) { 
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                $Count=0; 
            } 
            if($Count==0) { 
                $Line =~ s/k/e3/g;  
                $Line =~ s/x/e6/g;  
                $Line =~ s/m/e-3/g;  
                $Line =~ s/u/e-6/g;  
                $Line =~ s/n/e-9/g;  
                $Line =~ s/p/e-12/g;  
                $Line =~ s/f/e-15/g;  
                print "$Line"; 
            } 
            $Count++; 
        } 
    } 
    if($Mode ==0 && $Line eq "x\n") { 
        $Mode++; 
    } 
    if($Mode > 0) { 
        $Mode++; 
        if($Mode>4) { 
            $Mode=-1; 
        } 
    } 
} 
 
sub ArgvProcess { 
    for($k=0; $k<($#ARGV-1); $k++) { 
        if($ARGV[$k] eq '-s') {$Step="$ARGV[$k+1]";} 
        if($ARGV[$k] eq '-p') {$Phase="$ARGV[$k+1]";} 
        if($ARGV[$k] eq '-m') {$SearchPatternFile="$ARGV[$k+1]";} 
        if($ARGV[$k] eq '-h') { 
            print "Hspice lis data extractor\n"; 
            print "-s : Step\n"; 
            print "-p : Phase shift in integer\n"; 
            print "-h : This help file\n"; 
        } 
    } 
} 
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Appendix I    

LABVIEW CODES FOR DATA ACQUISITION 

 

The data acquisition hardware for ∆Σ oversampling ADC chip was National 

Instrument PCI-DIO-32HS data acquisition unit [61]. To automate the data acquisition 

process, a set of LabView [134] codes were programmed. Figure 106 shows the designed 

main control panel and Figure 107 shows the program structure. The program control 

flow is from top to bottom. There are 32-bits inputs and outputs in the PCI-DIO-32HS 

and a group of 8-bits makes a port. Each port can be an output or input port, though the 

ports 0 and 1 have a common input or output setting and the ports 2 and 3 have a 

common setting. In the code, ports 0 and 1 are input ports and ports 2 and 3 are output 

ports. The output ports send control signal according to the array addressing scheme by 

selecting a group of photo detector exclusively. Input data is collected and counted to get 

a first-order filtered or comb filtered estimation. The processed data is stored in the 

designated storage device with a time stamp for the following digital signal processing. 
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Figure 106: Main panel of data acquisition code 

 

Figure 107: LabView code structure 
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I.1 LabView Codes 

 

Figure 108: Daq0R2WLoop.vi 

 

Figure 109: Daq0r2WControl.vi 
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Figure 110: Daq0RCountProc.vi 

 

Figure 111: Daq0RDataProc.vi 
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Figure 112: Daq0Read.vi 

 

Figure 113: Daq2Write.vi 



 

196 

 

Figure 114: DaqArrayU32toDBL.vi 

 

Figure 115: DaqFileWrite.vi 
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